
Implementing SMB Direct for
Linux SMB Client

Long Li
Microsoft

Agenda

• Introduce to SMB Direct and RDMA
• Implement SMB Direct

• RDMA send/receive
• RDMA read/write through memory registration

• Profiling and optimization
• Some benchmark data

Linux SMB kernel Client

CIFS.KO

/lib/moduels/`uname –r`/kernel/fs/cifs/cifs.ko

mount –t cifs

SMB Direct

• Transferring SMB packets over RDMA
• Infiniband
• RoCE (RDMA over Converged Ethernet)
• iWARP (IETF RDMA over TCP)

• Introduced in SMB 3.0 with Windows 2012

New features

Windows Server 2012 SMB 3.0 SMB Direct

Windows Server 2012 R2 SMB 3.02 Remote invalidation

Windows Server 2016 SMB 3.1.1

RDMA programming interface

• In kernel programming interface
• drivers/infiniband/core
• Verbs: ib_core
• Connection Management: rdma_cm

• Works on all RDMA transport
• Infiniband
• RoCE
• iWARP

• Avoid using verbs that are specific to Infiniband

SMB Direct as a transport

TCP socket

SMB2

Page cache

VFS

SMB Direct

SMB2

Page cache

VFS

User mode

Kernel mode

I/O workload I/O workload

CIFS.KO

Transfer data with SMB Direct

• RDMA send and receive
• Similar to TCP socket interface, but with no data copy in most cases

• RDMA read and write
• Overlap local CPU and communication
• Reduce CPU overhead on send sider

• Connection based
• One RC (Reliable Connection) Queue Pair per connection
• Completion Queue is used to signaling I/O complete

RDMA Send/Recv vs TCP

• Stream vs datagram
• Both have the option of establishing reliable connection

• SMB Direct connection is a reliable connection
• Port 445 for Infiniband and RoCE environments
• Port 5445 for iWARP environments

• TCP works with stream
• Send whatever you want and receive the way you want it

• RDMA works with datagram
• Application figures out how to send them
• May need to do segmentation on send
• Reassemble data payloads on receive

RDMA Send/Recv vs TCP

• Memory management
• TCP socket

• TCP maintains send and receive buffers and communicate with peer on flow
control

• RDMA
• Application manages its own buffers

• Send -> no receive?
• Application needs to do flow control

• SMB Direct uses a credit system
• No send-credits? Can’t send data.

RDMA Send/Recv

Data

Data Data Data

SMB2

SMB Direct

Data

Data Data Data

SMB2

SMB Direct

Wait for credits

SMB Client SMB Server

Reassemble

RDMA Send/Recv

• CPU is doing all the hard work of packet segmentation and
reassembly

• Not the best way to send or receive a large packet
• Slower than most TCP hardware
• Today most of TCP based NIC support hardware offloading

• SMB Direct uses RDMA send/recv for smaller packets
• Default for packet size less than 4k bytes

SMB Direct credit system

Data

Data Data Data

SMB2

SMB Direct

Data

Data Data Data

SMB2

SMB Direct

Wait for credits

SMB Client SMB Server

ReassembleNumber of buffers
are limited

SMB Direct credit system

• Send credits
• Decreased on each RDMA send
• Receiving peer guarantees a RDMA recv buffer is posted for this send

• Credits are requested and granted in SMB Direct packet

SMB Direct credit system

• Running out of credits?
• Some SMB commands send or receive lots of packet
• One side keeps sending to the other side, no response is needed
• Eventually the send runs out of send credits

• SMB Direct packet without payload
• Extend credits to peer
• Keep transport flowing
• Should send as soon as new buffers are make available to post receive

RDMA Send/Recv

• How about large packets for file I/O?
• Typically SMB negotiates with I/O size as large as 1MB

RDMA Read/Write

Data

Data Data Data

SMB2

SMB Direct

Data

Data Data Data

SMB2

SMB Direct

Wait for credits

SMB Client SMB Server

Reassemble

RDMA Read/Write

Data

Data

SMB2

SMB Direct

Data

Data

SMB2

SMB Direct

Wait for credits

SMB Client SMB Server

SMB Direct packet describing the memory location in SMB Client

Transfer I/O via Server initiated RDMA read

Memory registration

• Client needs to tell Server where to write or read the data from its
memory

• Memory is registered for RDMA
• May not always be mapped to virtual address
• I/O data are described as pages

• Correct permission is set on the memory registration
• SMB Client asks the SMB Server to do a RDMA I/O on this memory

registration

Memory registration in SMB2 READ

• Specifying channel
• SMB2_CHANNEL_NONE
• SMB2_CHANNEL_RDMA_V1
• SMB2_CHANNEL_RDMA_V1_INVALIDATE

• SMB_DIRECT_BUFFER_DESCRIPTOR_1
• Offset 8 bytes
• Token 4 bytes
• Length 4 bytes

Memory registration in Linux

struct ib_mr {
struct ib_device *device;
struct ib_pd *pd;
u32 lkey;
u32 rkey;
u64 iova;
u32 length;
unsigned int page_size;
bool need_inval;
union {

struct ib_uobject *uobject; /* user */
struct list_head qp_entry; /* FR */

};
};

Each memory registration is represented by ib_mr

Memory registration in Linux

SMB_DIRECT_BUFFER_DESCRIPTOR_1
Offset 8 bytes
Token 4 bytes
Length 4 bytes

struct ib_mr {
struct ib_device *device;
struct ib_pd *pd;
u32 lkey;
u32 rkey;
u64 iova;
u32 length;
unsigned int page_size;
bool need_inval;
union {

struct ib_uobject *uobject; /* user */
struct list_head qp_entry; /* FR */

};
};

Translate Linux memory registration to SMB format

Memory registration in Linux

• Need to make sure memory is registered before posting the request
for SMB server to initiate RDMA I/O

• FRWR (Fast Registration Work Requests)
• Send IB_WR_REG_MR through ib_post_send
• No need to wait for completion
• Acts like a barrier in QP, guarantees it finishes before the following WR
• Supported by almost all the modern RDMA hardware

Memory registration invalidation

• What to do when I/O is finished
• Make sure SMB server no long has access to the memory region
• Otherwise it can be messy since this is a hardware address and can be

potentially changed by the server without client knowing it

• Client invalidates memory registration after I/O is done
• IB_WR_LOCAL_INV
• After it completes, server no longer has access to this memory
• Client has to wait for completion before buffer is consumed by upper layer

• Starting with SMB 3.02, SMB server supports remote invalidation
• SMB2_CHANNEL_RDMA_V1_INVALIDATE

Memory registration

Data

Data

SMB2

SMB Direct

Data

Data

SMB2

SMB Direct

Wait for credits

SMB Client SMB Server

SMB Direct packet describing the memory location in SMB Client

Transfer I/O via Server initiated RDMA read

MR

MR

MR

MR

Limited number of memory registration pending I/O available per QP
– determined by responder resources in CM

Memory deregistration
• Need to deregister memory registration after it’s used

• It is a slow process
• Can slow down I/O significantly if doing it synchronously

• Maintain a list of pre-allocated memory registration slots

• Defer to background process to recover MR while other I/Os are in progress
• Return I/O as soon as the MR is invalidated
• How about recovery process being blocked?
• No lock needed since there is one only recovery process modifying the list

MR MRMRMRMRMR
In use

Not in use

I/O issuing process
(CPU 0)

I/O issuing process
(CPU 2)

I/O issuing process
(CPU 1)

Memory region recovery process (CPU 3)

RDMA read/write

• Overlap local CPU and communication
• Client can proceed with other activities after memory is registered and SMB requests

sent to server
• The actually data transfer is done by RDMA hardware without CPU intervention

• Hardware figures out the best way to transfer data and handle all the I/O
details. e.g. segmentation and reassembly if needed

• Reduce CPU overhead on send sider
• There is a cost for doing memory registration and invalidation

• Suitable for larger packet
• The default threshold is 4k bytes

• Packets < 4k Send/Recv
• Packets >=4k Read/Write

Profiling

• Need to figure out the where is slow in the I/O path
• Light-weight profling
• TSC (Time Stamp Counter)

• Common in X86
• BIOS for C-states
• rdtsc()

• Store cycles in a histogram
• Number of leading zeros in TSC cycles
• __builtin_clzll()

RDMA Read/Write

Data

Data

SMB2

SMB Direct

Data

Data

SMB2

SMB Direct

Wait for credits

SMB Client SMB Server

SMB Direct packet describing the memory location in SMB Client

Transfer I/O via Server initiated RDMA read

RDMA Read/Write

Data

SMB2

SMB Direct Data

SMB2

SMB Direct

Wait for credits

SMB Client SMB Server

Server response
Interrupt context

CIFS I/O thread
Process context

Data

SMB2

SMB Direct

CPU 1 CPU 2
Interrupt context Process context

• RDMA is completed from
SOFTIRQ

• Completion Queue is polled
one by one on the same CPU

• Upper layer reads I/O in a
kernel thread on another CPU

• Reassembly queue is used to
pass data from CPU1 to CPU2

CIFS I/O thread
Process context

Reduce lock contention in receive queue

HEAD PACKET PACKET PACKET PACKET PACKET

CPU 1 add packet
from interrupt

CPU 2 reads and
removes packet
from process

• Those two CPUs don’t
modify the same data

• Memory barrier is used to
reduce lock contention

• Ring buffer?

RDMA send path

• Send path is about 6 - 10 times slower than receive path
CIFS code to send data:
1. allocate buffer
2. call transport to send buffer
3. release buffer
• RDMA doesn’t do buffers, so step 2 has to wait until I/O is finished

• wait_for_completion involves calling schedule

• Solution: move CIFS buffer allocation code to SMB Direct layer
• Estimated improvement: 5 – 20% on high queue depth

Use SMB Direct with Linux SMB Client

• mount -t -o rdma,vers=3.02
• Problems?

• Kernel messages
• /proc/fs/cifs/DebugData
• /sys/module/cifs/parameters/smbd_logging_class

Test setup

• Linux SMB Client
• 2 x Intel E5-2650 v3 @ 2.30GHz
• 128 GB RAM
• Mellanox ConnectX-3 Pro 40G Infiniband

• Windows 2106 SMB Server
• 2 x Intel E5-2695 v2 @ 2.40GHz
• 128 GB RAM
• SMB share on RAM disk
• Mellanox ConnectX-3 Pro 40G Infiniband

• Switch
• Mellanox SX6036 in Infiniband mode

• SMB dialect 3.02

0

500

1000

1500

2000

2500

3000

3500

4000

4k 16k 64k 256k 1m 4m

M
B/

s

I/O size

I/O Throughput Read

1
4
16
64
256

0

500

1000

1500

2000

2500

3000

4k 16k 64k 256k 1m 4m

M
B/

s

I/O size

I/O Throughput Write

1
4
16
64
256

0

500

1000

1500

2000

2500

3000

3500

4000

Read Write

Th
ro

ug
hp

ut
 M

B/
s

What about 2 QPs

2 QP
1 QP

If we have multiple
connections
2 QPs vs 1 QP

I/O size: 1m
queue depth: 16

30% increase for WRITE
Unchanged for READ

Future work

• Upper layer uses SMB Direct layer to allocate buffers
• Support multiple channel

• Multiple QPs

Questions

Thank you

	Implementing SMB Direct for�Linux SMB Client
	Agenda
	Linux SMB kernel Client
	SMB Direct
	RDMA programming interface
	SMB Direct as a transport
	Transfer data with SMB Direct
	RDMA Send/Recv vs TCP
	RDMA Send/Recv vs TCP
	RDMA Send/Recv
	RDMA Send/Recv
	SMB Direct credit system
	SMB Direct credit system
	SMB Direct credit system
	RDMA Send/Recv
	Slide Number 16
	Slide Number 17
	Memory registration
	Memory registration in SMB2 READ
	Memory registration in Linux
	Memory registration in Linux
	Memory registration in Linux
	Memory registration invalidation
	Slide Number 24
	Memory deregistration
	RDMA read/write
	Profiling
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Reduce lock contention in receive queue
	RDMA send path
	Use SMB Direct with Linux SMB Client
	Test setup
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Future work
	Questions
	Thank you

