September 24-27, 2018
Santa Clara, CA

www.storagedeveloper.org

Correlative Analytic Methods In Large Scale
Network Infrastructure

Hariharan Krishnaswamy

Senior Principal Engineer
Dell EMC



Data Center Network Characteristics
3 Continuous growth in scale & complexity

0 24/7 business workload
3 Addition, removal of infrastructure components
1 Changing execution environment

1 Dynamic workload patterns — varies by day of the
week, hour of the day

a3 Dynamic application arrivals/departures
0 Dynamic updates to firmware/software
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Network Outage & Consequences

P. Gill, N. Jain, and N. Nagappan, “Understanding network
failures in data centers: Measurement, analysis, and
implications,” in SIGCOMM, 2011

d 400+ network failures occur each year in data centers

d Network outages leads to extensive losses due to lack of
responsiveness or availability

ad Predictive intelligence LEADS TO Reduced downtime &
Maximum efficiency

Predict Failure/outage in advance
Proactively mitigate ill-effects of the anomalous behavior
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Data Center Failures

» Device failures
Server Host, NIC, HBA, CNA
Router, Switch, Load Balancer, Firewall
Storage Controller, Disk Array
Cable/Optics/Media

System/Protocol software failures

Application failures

Network failures

Data Traffic issues
Latency increase/Throughput decline
Sustained unexpected long term traffic load
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Data from monitoring instrumentation
Huge volumes of Historic Data & Current Data

d Events

ad Alerts

O Traps

d Syslog

d Counters

0 Packet traces
0 Debug dumps
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Objectives of Al & Analytic methods

d Improve the ‘signal-to-noise’ ratio to a large
extent

1 Model development from available historic data

0 Blend and ingest a variety of structured, semi-
structured and unstructured data

d Find hidden patterns & correlations relating the
device / network behavior




Symptoms & Anomalous conditions

Application symptoms

0 Backup application failure

0 Huge delay in storage access
0 Streaming video stall

Anomalous conditions

0 BGP anomaly (BGP flapping, leaks, table clears, etc.)
Queue full/buffer depletion

STP interop problem

Transceiver/optics/Cables issues

m|
m|
m|
0 QOS misconfiguration
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Al methods for network analytics

0 Association Rule Mining

0 Supervised Machine Learning — Regression
0 Supervised Machine Learning — Classification
0 Unsupervised Machine Learning - Clustering
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Associlation Rule Mining
d Important data mining concept

3 Uncover mutual connection between data items In
the massive data set

a1 Discover credible and representative rules

a Algorithms: Apriori, Partition, Pincer-Search,
Incremental, and Border algorithm

0 Most Popular algorithm: Apriori
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Apriori Algorithm
a Algorithm for mining frequent itemsets for boolean
association rules.

0 Apriori uses a "bottom up" approach, where frequent
subsets are extended one item at a time (a step known as
candidate generation) and groups of candidates are
tested against the data.

a Apriori is designed to operate on dataset containing
transactions

d Used extensively in Retail Analytics (Market Basket
Analysis)
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Frequent Iltem Set — (applied to event logs)

1 Given a set B of Events called the item base and a
large database T of event logs, itemset | € B. The
support St (1) of an item set | € B Is the number of
event logs in the database T.

a With a specified minimum-support S\, an item set |
Is called frequent in T iff S; (I) 2 Sy

a The goal is to identify all item sets | € B that are
frequent in a given event log database T




APRIORI ALGORITHM EXAMPLE

Transaction | Event Sequence

01 {ev-1, ev-3, ev-4}

02 {ev-2, ev-3, ev-5}

03 {ev-1, ev-2, ev-3, ev-5}
04 {ev-2, ev-5}
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APRIORI ALGORITHM EXAMPLE (Contd..)

Minimum support is 50%

Eventset | Support
{ev-1}
{ev-2}
{ev-3}

{ev-5}

W WwW WwN

The eventset {ev-4} has less than minimum support. Hence is discarded

Eventset | Support
{ev-1} 2
{ev-2} 3
{ev-3} 3
{ev-5} 3
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APRIORI ALGORITHM EXAMPLE (Contd..)

Two item eventsets

Eventset

{ev-1, ev-2}
{ev-1, ev-3}
{ev-1, ev-5}
{ev-2, ev-3}
{ev-2, ev-5}
{ev-3, ev-5}

Eventset Support

{ev-1, ev-3} |2
{ev-2,ev-3} |2
{ev-2, ev-5} |3
{ev-3, ev-5} |2

The eventsets {ev-1, ev-2} and {ev-1, ev-5} have less than minimum
support. Hence are discarded.

Eventset Support
{ev-1, ev-3} |2
{ev-2, ev-3} |2
{ev-2, ev-5} |3
{ev-3, ev-5} |2
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APRIORI ALGORITHM EXAMPLE (Contd..)

Three item eventsets

Eventset Support

{ev-2, ev-3, ev-5} |2

The eventsets {ev-1, ev-2,ev-3} hasless than minimum support. Hence
are discarded.

Frequent Eventset:

Eventset Support
{ev-2, ev-3, ev-5} |2
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Rule base Creation Algorithm

0 Event sequence model

a Apply frequent itemset mining to extract
frequently event sets

17 Among the frequent item sets, select the ones
with failure events

d Form Rule with Preceding events --> Failure event
0 Ex: { ev-A,ev-X,ev-T,ev-R} -> Failure event ev-F
A Iterate through all the frequent itemsets




TIMELINE OF FAILURE

EVENT-1 | EVENT-2 EVENT-3 EVENT-4 EVENT-5 EVENT-6

r =
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PREDICTION BASED ON ASSOCIATION RULE MINING - WORKFLOW

Historic
Data

Association
Rule Mining

PREDICTION-I

CURRENT
DATA RULE BASE PREDICTION-2

PREDICTION-3
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PREDICTION WITH RULEBASE
d Certain sequence of events LEAD TO specific
Failures.

d {ev-1,ev-2,ev-3,ev-4,ev-5,ev-6,............ ev-FAIL}

a Specific points in the event sequence could
Indicate probabilities of specific Failures

0 Additional statistics & support data could help
Improve prediction confidence
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Supervised Machine Learning
0 Requirement: Labeled historic data

1 Predictor variables and their interactions are the key

a Machine learning algorithms learn from the labeled
historic data

a Failure prediction is a CLASSIFICATION task
A Traffic demand forecasting is a REGRESSION task
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Feature Extraction

0 Data: Statistics, Events, Logs, Alerts, Traps, Counters,
Packet traces, Debug dumps

0 Data volume is huge (significant noise component too)
d Hence increased processing time

0 Features may be highly correlated

d Not all features may contribute to prediction

|

Solution: Dimensionality Reduction
1 Remove highly correlated features
0 PCA — Principal Component Analysis
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Solution: Dimensionality Reduction

dRemove highly correlated features by
feature-wise correlation analysis

AIPCA — Principal Component Analysis
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Feature Extraction - Principal Component Analysis

0 New set of features called components, which are
composites of the original features, but are
uncorrelated with one another

A First principal component accounts for the largest
possible variability in the data, the second
component the second most variability, and so on

SDC



HISTORIC DATA

Data
Cleansing
Feature
extraction
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Classification Algorithms — Machine Learning
a3 Naive Bayes Classifier

1 Nearest Neighbor

0 Support Vector Machines

a3 Decision Trees / Boosted Trees
0 Random Forest

3 Neural Networks

SDC



Dynamic Time Series of Feature Vectors
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Predicting future outage/failure conditions ?

a3 No feature vector available for time “t+y”

a3 Solution: Combine Time Series Regression &
Classification

A First predict the feature vectors at time “t+y”
(by Time Series Regression)

d Then predict the future outcome (by Prediction
Model)

SDC



Characteristics of Time Series Data
» Trend over time (Ex: Gradual increase/decrease of activity
over time)

» Seasonal trend or cycle (Ex: increases in the morning
hours, peaks in the afternoon and declines late at night)

» Seasonal variability. (Ex: Fluctuations wildly minute by
minute during the peak hours of 4-9 pm, and declining to
nearly zero by 1 am)

» Need to account for the Trend & Seasonality in the dataset
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Handling Trends & Seasonality

d Additive Holt-Winters method

Used for time series with constant (additive) seasonal
variations
a Multiplicative Holt-Winters method

Used for time series with increasing (multiplicative)
seasonal variations
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Steps in Time Series Prediction

1. Apply Holt Winters smoothing

2. Time series regression to forecast feature vector
at time “t+y”

3. Predict the future outcome using feature vector

Time fl ) . . fn PREDICTED
OUTCOME

time t+ty <value> <value> <value> <value> <value> <PREDICTION>
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Analytics System Architecture

Time
Series
Processing
Engine
Association
Rule

Engine

Text Mining
Engine

Insight
Engine
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Insight Engine
0 Context-aware Intelligent engine

a Meaningful insights & predictions from the
data

a3 Dynamic learning
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Proactive Mitigation

0 Outage/failure predicted in advance

d How to perform mitigative action ?

0 Reaction time should be very fast

0 Human intervention reaction time is too high

0 Automated, pre-defined, established actions
through software

“Event-Driven Programmability”

SDC



QUESTIONS & DISCUSSION

227
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THANK YOU VERY MUCH !!!
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Metrics (System level)

0 CPU

Average CPU usage - historical average
CPU usage - current

0 Memory

System memory - historical average
System memory usage - current

0 Disk

Disk space usage - historical average
Disk space usage - current

d File systems

File system/Descriptors - historical average
current usage

S D @ 2018 Storage Developer Conference. © Dell EMC. All Rights Rese




Metrics (Environmental)

Temperature sensor
Power-supply

Fan Trays
Voltage-sensor
Optics characteristics

g a a a a
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Metrics (Data path related)

0 Inbound(rx) packet errors in percentage

0 Inbound(rx) packets discarded in percentage

0 iInbound(rx) traffic, measured in Kb/s

0 Incoming(rx) bandwidth in use in percentage

0 Incoming(rx) packets discarded because of an unknown or
unsupported protocol

0 Incoming(rx) ucast pkts

0 Incoming(rx) mcast pkts

0 protocol specific stats
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Metrics (Data path related)

outbound(tx) packet errors in percentage
outbound packets discarded in percentage
outbound traffic, measured in Kb/s
outgoing bandwidth in use in percentage
Incoming(rx) ucast pkts

iIncoming(rx) mcast pkts

protocol specific stats

UDDDDDDD
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Metrics (Data path related)

3 ICMP round-trip-time and packet loss
Iperf data

QoS Profiles

BGP Sessions

OSPF Neighbor states

Historic throughput profile

Historic latency profile
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Data Correlation

Correlate symptoms to specific events, data and patterns
0 Symptom — Symptom correlation

0 Symptom — Event correlation

0 Event — Event correlation

(Events consistently occurring within a predefined time threshold
of each other)

0 Event — Data correlation
0 Data — Data correlation
0 Pattern — Pattern correlation
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SUPPORT VECTOR MACHNES
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