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Data Center Network Characteristics
 Continuous growth in scale & complexity
 24/7 business workload 
 Addition, removal of infrastructure components
 Changing execution environment
 Dynamic workload patterns – varies by day of the 

week, hour of the day
 Dynamic application arrivals/departures 
 Dynamic updates to firmware/software
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BALANCE THE DEMANDS OF AVAILABILITY & EFFICIENCY
Data 

Center 
Availability

Business 
Efficiency
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Network Outage & Consequences 
P. Gill, N. Jain, and N. Nagappan, “Understanding network 
failures in data centers: Measurement, analysis, and 
implications,” in SIGCOMM, 2011
 400+ network failures occur each year in data centers
 Network outages leads to extensive losses due to lack of 

responsiveness or availability
 Predictive intelligence  LEADS TO Reduced downtime & 

Maximum efficiency
A. Predict Failure/outage in advance
B. Proactively mitigate ill-effects of the anomalous behavior
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Data Center Failures
 Device failures

Server Host, NIC, HBA, CNA
Router, Switch, Load Balancer, Firewall
Storage Controller, Disk  Array
Cable/Optics/Media

 System/Protocol software failures
 Application failures
 Network failures
 Data Traffic issues

Latency increase/Throughput decline
Sustained unexpected long term traffic load
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Data from monitoring instrumentation
Huge volumes of Historic Data & Current Data
 Events
 Alerts
 Traps
 Syslog
 Counters
 Packet traces
 Debug dumps
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Objectives of AI & Analytic methods
 Improve the ‘signal-to-noise’ ratio to a large 

extent
 Model development from available historic data
 Blend and ingest a variety of structured, semi-

structured and unstructured data 
 Find hidden patterns & correlations relating the 

device / network behavior
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Application symptoms
 Backup application failure
 Huge delay in storage access
 Streaming video stall
Anomalous conditions
 BGP anomaly (BGP flapping, leaks, table clears, etc.)
 Queue full/buffer depletion
 STP interop problem
 Transceiver/optics/Cables issues
 QOS misconfiguration

Symptoms & Anomalous conditions
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AI methods for network analytics
 Association Rule Mining 
 Supervised Machine Learning – Regression
 Supervised Machine Learning – Classification
 Unsupervised Machine Learning - Clustering
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Association Rule Mining
 Important data mining concept
 Uncover mutual connection between data items in 

the massive data set
 Discover credible and representative rules
 Algorithms: Apriori, Partition, Pincer-Search, 

Incremental, and Border algorithm
 Most Popular algorithm: Apriori
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Apriori Algorithm
 Algorithm for mining frequent itemsets for boolean 

association rules. 
 Apriori uses a "bottom up" approach, where frequent 

subsets are extended one item at a time (a step known as 
candidate generation) and groups of candidates are 
tested against the data. 

 Apriori is designed to operate on dataset containing 
transactions

 Used extensively in Retail Analytics (Market Basket 
Analysis)
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Frequent Item Set – (applied to event logs) 
 Given a set B of Events called the item base and a 

large database T of event logs, itemset I ⊆ B. The 
support ST (I) of an item set I ⊆ B is the number of 
event logs in the database T.

 With a specified minimum-support SMIN, an item set I
is called frequent in T iff ST (I) ≥ SMIN

 The goal is to identify all item sets I ⊆ B that are 
frequent in a given event log database T
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APRIORI ALGORITHM EXAMPLE
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APRIORI ALGORITHM EXAMPLE (Contd..)
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APRIORI ALGORITHM EXAMPLE (Contd..)
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APRIORI ALGORITHM EXAMPLE (Contd..)
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Rule base Creation Algorithm
 Event sequence model
 Apply frequent itemset mining to extract 

frequently event sets
 Among the frequent item sets, select the ones 

with failure events
 Form Rule with Preceding events --> Failure event
 Ex: { ev-A,ev-X,ev-T,ev-R} -> Failure event ev-F
 Iterate through all the frequent itemsets 
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EVENT-1 EVENT-2 EVENT-3 EVENT-4 EVENT-5 EVENT-6 FAILURE

Phase I

Phase II

Phase III

TIMELINE OF FAILURE
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Historic 
Data

Association 
Rule Mining

RULE BASE

PREDICTION-1

PREDICTION-2

PREDICTION-3

CURRENT 
DATA

PREDICTION BASED ON ASSOCIATION RULE MINING - WORKFLOW
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PREDICTION WITH RULEBASE
 Certain sequence of  events LEAD TO specific 

Failures.
 {ev-1,ev-2,ev-3,ev-4,ev-5,ev-6,…………ev-FAIL}
 Specific points in the event sequence could 

indicate probabilities of specific Failures
 Additional statistics & support data could help 

improve prediction confidence



2018 Storage  Developer Conference. © Dell EMC.  All Rights Reserved. 21

Supervised Machine Learning
 Requirement: Labeled historic data 
 Predictor variables and their interactions are the key
 Machine learning algorithms learn from the labeled 

historic data
 Failure prediction is a CLASSIFICATION task
 Traffic demand forecasting is a REGRESSION task
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Feature Extraction
 Data: Statistics, Events, Logs, Alerts, Traps, Counters, 

Packet traces, Debug dumps
 Data volume is huge (significant noise component too)
 Hence increased processing time 
 Features may be highly correlated
 Not all features may contribute to prediction
 Solution: Dimensionality Reduction

 Remove highly correlated features
 PCA – Principal Component Analysis
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Solution: Dimensionality Reduction

Remove highly correlated features by 
feature-wise correlation analysis

PCA – Principal Component Analysis
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Feature Extraction - Principal Component Analysis
 New set of features called components, which are 

composites of the original features, but are 
uncorrelated with one another

 First principal component accounts for the largest 
possible variability in the data, the second 
component the second most variability, and so on
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HISTORIC DATA

Data 
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Feature 
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Feature 
Representation

Learning 
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Supervised Learning Workflow

CURRENT 
DATA
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extraction & 

Representation

Model 

PREDICTION
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Classification Algorithms – Machine Learning 
 Naive Bayes Classifier
 Nearest Neighbor
 Support Vector Machines
 Decision Trees / Boosted Trees
 Random Forest
 Neural Networks
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Dynamic Time Series of Feature Vectors 
TIME feature f1 f2 f3 … fn PREDICTED

OUTCOME

time t-k <> <value> <value> <value> NO ANAMOLY

… <value> <value> <value> <value> NO ANOMALY

time t <value> <value> <value> <value> ANOMALY

… <value> <value> <value> <value> NO ANOMALY

time t+x <value> <value> <value> <value> ANOMALY

time t+y ?? ?? ?? ?? HOW TO 
PREDICT 
OUTCOME 
FOR FUTURE 
TIME ????
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Predicting future outage/failure conditions ?
 No feature vector available for time “t+y”
 Solution: Combine Time Series Regression & 

Classification
 First predict the feature vectors at time “t+y”

(by Time Series Regression)
 Then predict the future outcome (by Prediction 

Model)
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Characteristics of Time Series Data
 Trend over time (Ex: Gradual increase/decrease of activity 

over time)
 Seasonal trend or cycle (Ex: increases in the morning 

hours, peaks in the afternoon and declines late at night)
 Seasonal variability. (Ex: Fluctuations wildly minute by 

minute during the peak hours of 4-9 pm, and declining to 
nearly zero by 1 am)

 Need to account for the Trend & Seasonality in the dataset
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Handling Trends & Seasonality
 Additive Holt-Winters method 

Used for time series with constant (additive) seasonal 
variations
 Multiplicative Holt-Winters method

Used for time series with increasing (multiplicative) 
seasonal variations
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Steps in Time Series Prediction
1. Apply Holt Winters smoothing 
2. Time series regression to forecast feature vector 

at time “t+y”
3. Predict the future outcome using feature vector

Time f1 f2 … … fn PREDICTED
OUTCOME

time t+y <value> <value> <value> <value> <value> <PREDICTION>
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Analytics System Architecture

Insight 
Engine

Text Mining 
Engine

Time 
Series 

Processing 
Engine

Association 
Rule  

Engine
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Insight Engine
 Context-aware Intelligent engine
 Meaningful insights & predictions from the 

data
 Dynamic learning
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Proactive Mitigation
 Outage/failure predicted in advance 
 How to perform mitigative action ?
 Reaction time should be very fast
 Human intervention reaction time is too high
 Automated, pre-defined, established actions 

through software
“Event-Driven Programmability”
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QUESTIONS & DISCUSSION

???
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THANK YOU VERY MUCH !!!
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Metrics (System level)
 CPU
Average CPU usage - historical average
CPU usage - current 
 Memory
System memory - historical average
System memory usage - current
 Disk 
Disk space  usage - historical average
Disk space usage - current
 File systems
File system/Descriptors - historical average
current usage
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Metrics (Environmental)

 Temperature sensor
 Power-supply
 Fan Trays
 Voltage-sensor
 Optics characteristics
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Metrics (Data path related)

 inbound(rx) packet errors in percentage
 inbound(rx) packets discarded in percentage
 inbound(rx) traffic, measured in Kb/s
 incoming(rx) bandwidth in use in percentage
 incoming(rx) packets discarded because of an unknown or 

unsupported protocol
 incoming(rx) ucast pkts
 incoming(rx) mcast pkts
 protocol specific stats
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Metrics (Data path related)
 outbound(tx) packet errors in percentage
 outbound packets discarded in percentage
 outbound traffic, measured in Kb/s
 outgoing bandwidth in use in percentage
 incoming(rx) ucast pkts
 incoming(rx) mcast pkts
 protocol specific stats
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Metrics (Data path related)
 ICMP round-trip-time and packet loss
 Iperf data
 QoS Profiles
 BGP Sessions
 OSPF Neighbor states
 Historic throughput profile
 Historic latency profile
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Data Correlation

Correlate symptoms to specific events, data and patterns
 Symptom – Symptom correlation
 Symptom – Event correlation
 Event – Event correlation
(Events consistently occurring within a predefined time threshold 
of each other)
 Event – Data correlation
 Data – Data correlation
 Pattern – Pattern correlation
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SUPPORT VECTOR MACHNES
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