Data Architecture for Data-driven Enterprises

Deepti Aggarwal, Rukma Talwadker
NetApp, Inc.
Big Data and AI/ML for insights

Sources of BIG DATA:

- Archives: Scanned Docs, Emails
- Media: Images, Audio, Videos
- Social Networking: Tweets, Likes, Chats
- Sensor Data: Medical devices, Wearables devices
- Log Data: Application, Server, Click Stream

Local vs. Cloud compute:

Data lake

Data Filtration/cleaning
Data Processing (real / near real / batch)
Data Analytics
Machine Learning
Deep Learning
Data Visualization
Change in the Data Lifecycle

Warrants the need for a re-look at Data Architecture

- Kind of data
- Generation of Data
- Processing of data
- Extracting value from data

~160 ZB by 2025
Evolving Data Pipeline

Data Ingest
- Data collection and aggregation
- Real time model inference

Data Processing
- Dedicated hardware
- Model Building

Data Archival
- Hosted as-a-service solutions
- Long term data retention

Edge

Core

Cloud
Evolving Data Pipeline

Data Ingest
- Data collection and aggregation
- Real-time model inference

Data Processing
- Dedicated hardware
- Model building

Data Archival
- Hosted as-a-service solutions
- Long-term data retention

Performance

Efficient Storage

Security

Compliance

Data Quality

Edge

Core

Cloud
Edge

Real Time Insights
Data Ingestion & Transfer
Storage Efficiency over the Wire

- WAN transfer from the edge to the core/cloud
- Two views:
 - Transfer limited data
 - ‘Useful’ data
 - Deviations from ‘normal’
 - Transfer all data
 - Keep everything
 - Quantifiable data loss/approximation
Matrix Profiles: An anytime algorithm for time series analysis

http://www.cs.ucr.edu/~eamonn/MatrixProfile.html

• Anytime Algorithm
 • Consistent result at any iteration
• Scales with hardware
• Helps identify recurring sub-sequences, anomalies, change points, etc.
• Time series represented as a sequence of repeating patterns → data reduction
Metadata Enrichment: Quality, type, content, behavior…

- First point of data entry into the pipeline
- What tags to add?
 - Data Quality
 - Completeness, accuracy, timeliness
 - Kind of data
 - File extension based, content based
 - Behavior
 - Anomalous, normal
 - Lineage, auditing
- Aids data workflows down the pipeline
- Kafka added support for enriching streams with custom metadata
Security is a major concern at the edge

- Data privacy
- Access controls and perimeter security (firewalls)
- Too many end-points
- What if device gets hacked/stolen?
 - Means of authentication at the edge node
- Establish secure session based public key sharing
 - SSL Certificates
Core

Private Cloud, Datacenter

Secure Domain
Parallel compute demands high performance from storage

- More advanced Neural Network variants
 - RNN, CNN etc

- Easily available platforms
 - Tensorflow, Keras, Theano…

- More and more data!!

- Operationalizing AI/ML workflows and prevalence of GPUs

- High, predictable performance from the underlying storage

- Model training stretching to days
 - A small factor slowdown in storage impacts cost heavily.
‘Smart’ Data Indexing to meet performance requirements

- Changing workloads
- New analytic applications
- Dynamic indexing based on query patterns
 - Which columns to index?
 - When to update the indices?
 - Cost of updating indexes is compute heavy
 - Which indices are obsolete?

- Traditional indices do not take advantage of the data distribution or patterns in the data.
- ‘Learned’ Indexes
 - Key idea: Structure of keys or sort order learnt, used to predict location of record

Futuristic scenario: AI/ML models replacing Core Data Management components
Aggregation and Preparation for transfer to Cloud

- Effective aggregation to present holistic view of data to applications
 - Raw data from millions of sensors
 - Continuous streams – transformations by analytic apps
 - Structured, unstructured, text, multimedia
- Data Anonymization
 - Data goes out of private domain
- Data preparation for transfer
 - Bundle which data together?
 - Encrypt and maintain Key Metadata Store
 - Compression
Cloud

Data archival

Less trusted domain
Compliance governs data archival

- Compliance regulations dictate lifecycle of data
 - Right to be forgotten/GDPR
 - Mandates need for efficient indexing
 - Provenance/traceability
 - Metadata about every small modification
 - Data auditing
 - Long term data retention
 - Cost
 - Unpredictable growth in data
Archival Tiering

- Reducing archival cost due to exponential growth in data
 - Erasure Coding over replication

- Archival Tiering
 - AWS archive tiers: S3, Glacier Expedite, Glacier Bulk
 - Tradeoff between retrieval times and $/GB

- Another way to minimize cost further: Choose different Erasure coding Schemes for different tiers
 - Tradeoff between storage overhead, read times, bandwidth and compute performance.
 - Coldest tier: minimal storage overhead, active archive: lower read times.
Cloud goes hand-in-hand with Data Security

- Store encrypted data in cloud with key metadata on-prem in protected environment
- VPNs – one mechanism to provide restricted access
- Enterprises’ looking to run analytics on archives?
 - In presence of encryption?

- Ongoing work: encryption schemes which compromise on some security to preserve a particular aspect of data
 - Searchable encryption
 - Order-preserving encryption
Other Dimensions of interest

- Storage infrastructure suitable for each layer
 - Object stores v/s tradition NAS
- Implementation of Compliance regulations
- Global namespace across the pipeline
Key Takeaways

- Changing data lifecycle
- Data management issues remain the same – need a re-think in context of changing data workflows
- Performance, Compliance, Data Quality, Security and Efficient Storage are the key data management challenges that emerge
Thank You