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Serverless Computing

0 Serverless computing enables users to launch short-lived tasks
with high elasticity and fine-grain resource billing
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Serverless Computing

0 Serverless computing enables users to launch short-lived tasks
with high elasticity and fine-grain resource billing

3 This also makes serverless appealing for interactive analytics
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Serverless Computing

0 Serverless computing enables users to launch short-lived tasks
with high elasticity and fine-grain resource billing

3 This also makes serverless appealing for interactive analytics

0 The challenge: serverless tasks (lambdas) need an efficient way

to communicate intermediate data between execution stages
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In traditional analytics...

0 Ephemeral data is exchanged directly between tasks

mapper,
e d
reducer,
mapper, 0
mapper, 0

mapper; o

SDC



In traditional analytics...

0 Ephemeral data is exchanged directly between tasks

mapper,

reducer,
mapper, .//
mapper, .//

mapper;

SDC



In serverless analytics...

7 Direct communication between lambdas is difficult;
Lambdas are short-lived and stateless

Users have no control over lambda scheduling
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In serverless analytics...

0 The natural approach for sharing ephemeral data is through a
common data store
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In serverless analytics...

3 The natural approach for sharing ephemeral data is through a
common data store

7 However, existing storage systems do not meet the elasticity,
performance and cost demands of serverless analytics jobs
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Requirements for Ephemeral Storage

Ephemeral 1/O Throughput:

Write (dotted), Read (solid) Ephemeral Data Capacity

Application Type
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High throughput and IOPS
due to high parallelism:
lambdas each compile

independent files

Final stage lambdas are serialized
as they depend on prior lambdas
— low parallelism, low I/O rate

18 Understanding Ephemeral Storage for Serverless Analytics. Ana Klimovic, Yawen Wang,
Christos Kozyrakis, Patrick Stuedi, Jonas Pfefferle, Animesh Trivedi. ATC’18, 2018.
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(up to 7.5 GB/s with 500 lambdas)
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Requirements for Ephemeral Storage

7 Need high throughput (for large objects) and low latency (for small objects).
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Requirements for Ephemeral Storage

0 Need automatic resource scaling and storage technology awareness

0 Example of performance-cost tradeoff for a serverless video analytics jobs
with different ephemeral data store configurations
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Finding the Pareto optimal resource
allocation is non-trivial...and gets
harder with multiple jobs.




Requirements for Ephemeral Storage

0 Do not need high fault tolerance, contrary to traditional storage systems

0 Fault tolerance is typically baked into application frameworks
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Ephemeral data has short
lifetime; it is only valuable
during job execution




Requirements for Ephemeral Storage

Summary:
I. High performance for a wide range of object sizes
2. Automatic resource scaling with storage technology awareness

3. Fault-(in)tolerance
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Pocket AN\

3 An elastic, distributed data store for ephemeral data sharing in
serverless analytics

0 Key properties:

High throughput, low latency for a wide range of object sizes [Performance]
Automatic resource scaling and rightsizing [Cost, scalability]

Intelligent data placement across multiple storage tiers [Cost]

0 Pocket achieves similar performance to Redis, an in-memory key value
store, while saving ~60% in cost for various serverless analytics jobs

SDC




Pocket

0 Design principles:
Separation of responsibilities: control, metadata, and data
plane can each be scaled independently

Sub-second response time: storage servers optimized for
fast, simple 1/O operations

Multiple storage tiers: use DRAM, Flash, and/or HDD to
meet application I/O requirements at low cost

18 Pocket: Elastic Ebhemeral Storage for Serverless Analytics. Ana Klimovic, Yawen Wang,
Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Christos Kozyrakis. OSDI’18, 2018.
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Pocket: System architecture
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Pocket: System architecture
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Pocket: System architecture
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Resource allocation

Optional hints about job attributes:

Job A g "
* Latency sensitivity
AAANAAAA * Maximum # of concurrent lambdas
* Total ephemeral data capacity

ANAAAANA

» Peak aggregate bandwidth required

|. Throughput allocation
2. Capacity allocation
3. Choice of storage tier(s)

"-_ i. Register job

~
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Resource assignment

Job A
AAAAAAA
AA)\A_A)\A

"-_ i. Register job

Controller *
app-driven resource
allocation & scaling

Ii. Allocate & assign
resources for job

Storage server A Storage server B

|. Throughput allocation
2. Capacity allocation
3. Choice of storage tier(s)

‘ online bin-packing algorithm

Job Weight Map Job A:

~

Metadata server(s)
request routing

Storage server C

Server C 2
Server D > [

Job B:

Server A 2
Server B 2
Server C 2

CPU

Storage server D

CPU CPU CPU
Net Net Net Net
HDD Flash DRAM DRAM

SDC




Elastic Rightsizing

3 The controller continuously monitors cluster resource utilization
Nodes send CPU, network bandwidth, and storage capacity usage every second

0 The controller scales resources dynamically as jobs register and deregister
Policy: keep CPU, network bandwidth and storage tier capacity utilization
within a target range (e.g., 60-80%)
Mechanism: use weight map to balance load by steering data for incoming jobs
onto active storage nodes and away from nodes that will be taken down
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Implementation

O Pocket’s storage and metadata server implementation is based on
the Apache Crail distributed storage system

0 We use ReFlex for the Flash storage tier

0 Pocket runs the storage and metadata servers in containers,
orchestrated using Kubernetes
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Apache €

O High-performance distributed data store designed for ephemeral
data sharing in distributed data processing frameworks (e.g., Spark)

3 Originally designed to leverage high-performance RDMA networks

O Pluggable storage tiers and network processing layers

5 Compute

Data Processing

Crail Store (Core)

BlkDev
RDMA RDMA GPU iSCslI
read/write fabrics direc! RDMA

~@’ s Storage
S D @ https://crail.incubator.apache.org/
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ReFlex

0 Software for fast access to NVMe Flash over commodity networks

|. Low latency, high throughput with low compute overhead:
Direct access to NIC and NVMe queues from userspace
Polling-based, run to completion execution model
Minimal data copying; forward data directly between NIC and Flash
Adaptive batching

2. Predictable performance on shared Flash with QoS-aware /O scheduler
Enforce throughput and tail latency SLOs for tenants sharing Flash

Provide isolation to mitigate read/write request interference

www.github.com/stanford-mast/reflex

|8 ReFlex: Remote Flash == Local Flash. Ana Klimovic, Heiner Litz, Christos Kozyrakis.
ASPLOS’17, 2017. Memorable Paper Award at NVM’18.
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Pocket deployment

0 We deploy Pocket on Amazon Web Services (AWS) EC2

Pocket Controller / mb5.xlarge

Metadata server oo
O0Op
DRAM server r4.2xlarge u\i>

Amazon EC2

NVMe Flash server i3.2xlarge

0 We use AWS Lambda as our serverless platform
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Latency
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Throughput scaling

| MB requests from 100 concurrent lambdas
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Rightsizing with hints
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Rightsizing with multiple jobs
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Execution time for 100 GB sort job
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Execution time for 100 GB sort job
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Cost analysis

0 Pocket leverages job attribute hints for cost-effective resource allocation and
amortizes VM costs across multiple jobs, offering a pay-what-you-use model

3 S3 is much cheaper but the cost comparison is not fair as S3 pricing is based
on cloud provider resource costs vs. cloud customer resource costs

®m S3 ® Redis Pocket (with throughput & capacity hints)

Pocket reduces cost
4 by ~60% compared
to Redis for all 3 jobs

Job Execution Cost ($/hr)

0 . .

Sort Video analytics Lambda-cc
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Future work

0 Autonomously learn application characteristics across jobs
0 Use slack resources in the datacenter to run ephemeral storage nodes

0 Explore other use cases for distributed ephemeral storage, beyond
serverless computing
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Conclusion

0 Pocket is a distributed ephemeral storage system providing:
Low latency, high throughput
Automatic resource scaling

Intelligent data placement across nodes

7 We designed Pocket for ephemeral data sharing in serverless

analytics. However, Pocket can be used more generally for
applications requiring an elastic, distributed /tmp.

www.github.com/stanford-mast/pocket
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