
1

Pocket: Elastic Ephemeral Storage

for Serverless Analytics

Ana Klimovic*, Yawen Wang*, Patrick Stuedi+,

Animesh Trivedi+, Jonas Pfefferle+, Christos Kozyrakis*

*Stanford University, +IBM Research

2

Serverless Computing

 Serverless computing enables users to launch short-lived tasks

with high elasticity and fine-grain resource billing

3

Serverless Computing

 Serverless computing enables users to launch short-lived tasks

with high elasticity and fine-grain resource billing

 This also makes serverless appealing for interactive analytics

 λ
λ
λ

λ

λ
λ

λ
λ

Result
User query

&

input data

4

Serverless Computing

 Serverless computing enables users to launch short-lived tasks

with high elasticity and fine-grain resource billing

 This also makes serverless appealing for interactive analytics

Result

λ
λ
λ

λ

λ
λ

λ
λ

User query

&

input data

5

Serverless Computing

 Serverless computing enables users to launch short-lived tasks

with high elasticity and fine-grain resource billing

 This also makes serverless appealing for interactive analytics

 The challenge: serverless tasks (lambdas) need an efficient way

to communicate intermediate data between execution stages

ephemeral data

6

In traditional analytics…

 Ephemeral data is exchanged directly between tasks

reducer0

reducer1

mapper1

mapper2

mapper3

mapper0

7

In traditional analytics…

 Ephemeral data is exchanged directly between tasks

reducer0

reducer1

mapper1

mapper2

mapper3

mapper0

8

In serverless analytics…

 Direct communication between lambdas is difficult:

 Lambdas are short-lived and stateless

 Users have no control over lambda scheduling

9

In serverless analytics…

 Direct communication between lambdas is difficult:

 Lambdas are short-lived and stateless

 Users have no control over lambda scheduling

reducer0

reducer1

mapper1

mapper2

mapper3

mapper0

?

10

In serverless analytics…

 The natural approach for sharing ephemeral data is through a

common data store

reducer0

reducer1

mapper1

mapper2

mapper3

mapper0

11

In serverless analytics…

 The natural approach for sharing ephemeral data is through a

common data store

 However, existing storage systems do not meet the elasticity,

performance and cost demands of serverless analytics jobs

12

Requirements for Ephemeral Storage

High throughput and IOPS

due to high parallelism:

lambdas each compile

independent files

Final stage lambdas are serialized

as they depend on prior lambdas

→ low parallelism, low I/O rate

Understanding Ephemeral Storage for Serverless Analytics. Ana Klimovic, Yawen Wang,

Christos Kozyrakis, Patrick Stuedi, Jonas Pfefferle, Animesh Trivedi. ATC’18, 2018.

https://www.usenix.org/system/files/conference/atc18/atc18-klimovic-serverless.pdf

13

Requirements for Ephemeral Storage

High throughput due to high I/O

intensity and parallelism

(up to 7.5 GB/s with 500 lambdas)

Understanding Ephemeral Storage for Serverless Analytics. Ana Klimovic, Yawen Wang,

Christos Kozyrakis, Patrick Stuedi, Jonas Pfefferle, Animesh Trivedi. ATC’18, 2018.

https://www.usenix.org/system/files/conference/atc18/atc18-klimovic-serverless.pdf

14

Requirements for Ephemeral Storage

Understanding Ephemeral Storage for Serverless Analytics. Ana Klimovic, Yawen Wang,

Christos Kozyrakis, Patrick Stuedi, Jonas Pfefferle, Animesh Trivedi. ATC’18, 2018.

https://www.usenix.org/system/files/conference/atc18/atc18-klimovic-serverless.pdf

15

Requirements for Ephemeral Storage

 Need high throughput (for large objects) and low latency (for small objects).

Object sizes vary from

100s of bytes to 100s of MBs

16

Requirements for Ephemeral Storage

 Need automatic resource scaling and storage technology awareness

 Example of performance-cost tradeoff for a serverless video analytics jobs

with different ephemeral data store configurations

Finding the Pareto optimal resource

allocation is non-trivial…and gets

harder with multiple jobs.

17

Requirements for Ephemeral Storage

 Do not need high fault tolerance, contrary to traditional storage systems

 Fault tolerance is typically baked into application frameworks

Ephemeral data has short

lifetime; it is only valuable

during job execution

18

Requirements for Ephemeral Storage

Summary:

1. High performance for a wide range of object sizes

2. Automatic resource scaling with storage technology awareness

3. Fault-(in)tolerance

19

Pocket

 An elastic, distributed data store for ephemeral data sharing in

serverless analytics

 Key properties:

 High throughput, low latency for a wide range of object sizes

 Automatic resource scaling and rightsizing

 Intelligent data placement across multiple storage tiers

 Pocket achieves similar performance to Redis, an in-memory key value

store, while saving ~60% in cost for various serverless analytics jobs

[Performance]

[Cost, scalability]

[Cost]

20

Pocket

 Design principles:

 Separation of responsibilities: control, metadata, and data

plane can each be scaled independently

 Sub-second response time: storage servers optimized for

fast, simple I/O operations

 Multiple storage tiers: use DRAM, Flash, and/or HDD to

meet application I/O requirements at low cost

Pocket: Elastic Ephemeral Storage for Serverless Analytics. Ana Klimovic, Yawen Wang,

Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Christos Kozyrakis. OSDI’18, 2018.

https://www.usenix.org/conference/osdi18/presentation/klimovic

21

Metadata server(s)
request routing

Pocket: System architecture

Storage server

CPU

Net

HDD

Storage server

CPU

Net

Flash

Storage server

CPU

Net

DRAM

Storage server

CPU

Net

DRAM

Controller
app-driven resource
allocation & scaling

Metadata server(s)
request routing

22

Metadata server(s)
request routing

Pocket: System architecture

Job A

λ λ λ λ λ λ λ

λ λ λ λ λ λ λ

Job B

λ λ λ λ λ

λ λ λ λ

Job C

λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ

i. Register job

Storage server

CPU

Net

HDD

Storage server

CPU

Net

Flash

Storage server

CPU

Net

DRAM

Storage server

CPU

Net

DRAM

Controller
app-driven resource
allocation & scaling

ii. Allocate & assign

resources for job

Metadata server(s)
request routing

23

Metadata server(s)
request routing

Pocket: System architecture

Job A

λ λ λ λ λ λ λ

λ λ λ λ λ λ λ

Job B

λ λ λ λ λ

λ λ λ λ

Job C

λ λ λ λ λ λ λ λ λ λ

λ λ λ λ λ λ λ λ λ λ λ

iii. Deregister

job

1. 2. 3.
PUT ‘x’

GET/PUT API

accepts hints about

job attributes and

data lifetime

Storage server

CPU

Net

HDD

Storage server

CPU

Net

Flash

Storage server

CPU

Net

DRAM

Storage server

CPU

Net

DRAM

Controller
app-driven resource
allocation & scaling

Metadata server(s)
request routing

24

Resource allocation

Storage server

CPU

Net

HDD

Storage server

CPU

Net

Flash

Storage server

CPU

Net

DRAM

Storage server

CPU

Net

DRAM

Controller
app-driven resource
allocation & scaling

i. Register job

ii. Allocate & assign

resources for job

Optional hints about job attributes:
 Latency sensitivity

 Maximum # of concurrent lambdas

 Total ephemeral data capacity

 Peak aggregate bandwidth required

1. Throughput allocation

2. Capacity allocation

3. Choice of storage tier(s)

Job A

λ λ λ λ λ λ λ

λ λ λ λ λ λ λ

Metadata server(s)
request routing

Metadata server(s)
request routing

25

Resource assignment

Storage server A

CPU

Net

HDD

Storage server B

CPU

Net

Flash

Storage server C

CPU

Net

DRAM

Storage server D

CPU

Net

DRAM

Controller
app-driven resource
allocation & scaling

i. Register job

ii. Allocate & assign

resources for job

Job A

λ λ λ λ λ λ λ

λ λ λ λ λ λ λ

1. Throughput allocation

2. Capacity allocation

3. Choice of storage tier(s)

Job A:

Server C 

Server D 

0.4

0.6

Job B:

Server A 

Server B 

Server C 

0.2

0.3

0.5

online bin-packing algorithm

Job Weight Map

Metadata server(s)
request routing

Metadata server(s)
request routing

26

Elastic Rightsizing

 The controller continuously monitors cluster resource utilization

 Nodes send CPU, network bandwidth, and storage capacity usage every second

 The controller scales resources dynamically as jobs register and deregister

 Policy: keep CPU, network bandwidth and storage tier capacity utilization

within a target range (e.g., 60-80%)

 Mechanism: use weight map to balance load by steering data for incoming jobs

onto active storage nodes and away from nodes that will be taken down

27

Elastic Rightsizing

 The controller continuously monitors cluster resource utilization

 Nodes send CPU, network bandwidth, and storage capacity usage every second

 The controller scales resources dynamically as jobs register and deregister

 Policy: keep CPU, network bandwidth and storage tier capacity utilization

within a target range (e.g., 60-80%)

 Mechanism: use weight map to balance load by steering data for incoming jobs

onto active storage nodes and away from nodes that will be taken down

Storage server A

CPU

Net

HDD

Storage server B

CPU

Net

Flash

CPU

Net

DRAM

Storage server D

CPU

Net

DRAM

Storage server C

CPU

Net

DRAM

28

Implementation

 Pocket’s storage and metadata server implementation is based on

the Apache Crail distributed storage system

 We use ReFlex for the Flash storage tier

 Pocket runs the storage and metadata servers in containers,

orchestrated using Kubernetes

29

Apache Crail

 High-performance distributed data store designed for ephemeral

data sharing in distributed data processing frameworks (e.g., Spark)

 Originally designed to leverage high-performance RDMA networks

 Pluggable storage tiers and network processing layers

https://crail.incubator.apache.org/

https://crail.incubator.apache.org/

30

ReFlex

 Software for fast access to NVMe Flash over commodity networks

 1. Low latency, high throughput with low compute overhead:

 Direct access to NIC and NVMe queues from userspace

 Polling-based, run to completion execution model

 Minimal data copying; forward data directly between NIC and Flash

 Adaptive batching

 2. Predictable performance on shared Flash with QoS-aware I/O scheduler

 Enforce throughput and tail latency SLOs for tenants sharing Flash

 Provide isolation to mitigate read/write request interference

www.github.com/stanford-mast/reflex

ReFlex: Remote Flash == Local Flash. Ana Klimovic, Heiner Litz, Christos Kozyrakis.

ASPLOS’17, 2017. Memorable Paper Award at NVM’18.

http://www.github.com/stanford-mast/reflex
http://www.github.com/stanford-mast/reflex
http://www.github.com/stanford-mast/reflex
https://web.stanford.edu/~anakli/pdf/reflex.pdf
https://web.stanford.edu/~anakli/pdf/reflex.pdf

31

Pocket deployment

 We deploy Pocket on Amazon Web Services (AWS) EC2

 We use AWS Lambda as our serverless platform

Pocket Controller /

Metadata server

m5.xlarge

DRAM server r4.2xlarge

NVMe Flash server i3.2xlarge

32

Latency
1 KB request access from AWS Lambda client

33

Throughput scaling

Reach AWS Lambda

per-λ network limit

1 MB requests from 100 concurrent lambdas

SATA/SAS-based SSD

and HDD tiers offer

significantly lower

throughput

With 2 nodes, Pocket-

NVMe and Pocket-

DRAM offer higher

throughput than S3

34

Rightsizing with hints

Provision based on

per-λ network limit

Use Flash instead of

DRAM since not

latency sensitive

Use Flash instead of

DRAM since not

latency sensitive

35

Rightsizing with multiple jobs

The controller elastically

scales resources to meet

the requirements of

multiple jobs

36

Execution time for 100 GB sort job

S3 does not provide

sufficient throughput

S3 request rate

limit errors for

500+ lambdas

37

Execution time for 100 GB sort job

Pocket-NVMe

achieves similar

performance to Redis

38

Cost analysis
 Pocket leverages job attribute hints for cost-effective resource allocation and

amortizes VM costs across multiple jobs, offering a pay-what-you-use model

 S3 is much cheaper but the cost comparison is not fair as S3 pricing is based

on cloud provider resource costs vs. cloud customer resource costs

 (with throughput & capacity hints)

Pocket reduces cost

by ~60% compared

to Redis for all 3 jobs

39

Future work

 Autonomously learn application characteristics across jobs

 Use slack resources in the datacenter to run ephemeral storage nodes

 Explore other use cases for distributed ephemeral storage, beyond

serverless computing

40

Conclusion

 Pocket is a distributed ephemeral storage system providing:

 Low latency, high throughput

 Automatic resource scaling

 Intelligent data placement across nodes

 We designed Pocket for ephemeral data sharing in serverless

analytics. However, Pocket can be used more generally for
applications requiring an elastic, distributed /tmp.

www.github.com/stanford-mast/pocket

http://www.github.com/stanford-mast/pocket
http://www.github.com/stanford-mast/pocket
http://www.github.com/stanford-mast/pocket

