September 24-27, 2018
Santa Clara, CA
www.storagedeveloper.org

Pocket: Elastic Ephemeral Storage
for Serverless Analytics

Ana Klimovic*, Yawen Wang*, Patrick Stuedi*,

Animesh Trivedi*, Jonas Pfefferle™, Christos Kozyrakis™

*Stanford University, *IBM Research

Serverless Computing

0 Serverless computing enables users to launch short-lived tasks
with high elasticity and fine-grain resource billing

& C T
SIS
__ e sevce A ™M
L C&se B
ol == 53
unﬂ Q'gﬁ@ [I \. Microservices
R

SDC

Serverless Computing

0 Serverless computing enables users to launch short-lived tasks
with high elasticity and fine-grain resource billing

3 This also makes serverless appealing for interactive analytics

User query A A A A
& o 4 A A =) Result
input data A A

SDC

Serverless Computing

0 Serverless computing enables users to launch short-lived tasks
with high elasticity and fine-grain resource billing

3 This also makes serverless appealing for interactive analytics

User query A A
& 4 =)) = = =) Result
input data A

SDC

Serverless Computing

0 Serverless computing enables users to launch short-lived tasks
with high elasticity and fine-grain resource billing

3 This also makes serverless appealing for interactive analytics

0 The challenge: serverless tasks (lambdas) need an efficient way

to communicate intermediate data between execution stages

\ }
|

ephemeral data

SDC

In traditional analytics...

0 Ephemeral data is exchanged directly between tasks

mapper,
e d
reducer,
mapper, 0
mapper, 0

mapper; o

SDC

In traditional analytics...

0 Ephemeral data is exchanged directly between tasks

mapper,

reducer,
mapper, .//
mapper, .//

mapper;

SDC

In serverless analytics...

7 Direct communication between lambdas is difficult;
Lambdas are short-lived and stateless

Users have no control over lambda scheduling

SDC

In serverless analytics...

7 Direct communication between lambdas is difficult;
Lambdas are short-lived and stateless

Users have no control over lambda scheduling

mapper,
. d
reducer
0
mapper, 0
mapper, 0

mapper; o

SDC

In serverless analytics...

0 The natural approach for sharing ephemeral data is through a
common data store

mapper,

reducer,
mapper,
mapper,

mapper;

SDC

In serverless analytics...

3 The natural approach for sharing ephemeral data is through a
common data store

7 However, existing storage systems do not meet the elasticity,
performance and cost demands of serverless analytics jobs

SDC

Requirements for Ephemeral Storage

Ephemeral 1/O Throughput:

Write (dotted), Read (solid) Ephemeral Data Capacity

Application Type

0.4. —— gg-cmake

Distributed
Compilation

0.85GB

0.2

Total GB/s

0.0

Time (s)

High throughput and IOPS
due to high parallelism:
lambdas each compile

independent files

Final stage lambdas are serialized
as they depend on prior lambdas
— low parallelism, low I/O rate

18 Understanding Ephemeral Storage for Serverless Analytics. Ana Klimovic, Yawen Wang,
Christos Kozyrakis, Patrick Stuedi, Jonas Pfefferle, Animesh Trivedi. ATC’18, 2018.

https://www.usenix.org/system/files/conference/atc18/atc18-klimovic-serverless.pdf

Requirements for Ephemeral Storage

Ephemeral I/O Throughput:

Write (dotted), Read (solid) Ephemeral Data Capacity

Application Type

0.4 —— gg-cmake
Distributed o 02 0.85GB
Compilation @ e I |
= 12.5 15.0 17.5 20.0
E 7.5
MapReduce | 100 GB

High throughput due to high I/O

intensity and parallelism
(up to 7.5 GB/s with 500 lambdas)

18 Understanding Ephemeral Storage for Serverless Analytics. Ana Klimovic, Yawen Wang,
Christos Kozyrakis, Patrick Stuedi, Jonas Pfefferle, Animesh Trivedi. ATC’18, 2018.

https://www.usenix.org/system/files/conference/atc18/atc18-klimovic-serverless.pdf

Requirements for Ephemeral Storage

Ephemeral 1/O Throughput:

Write (dotted), Read (solid) Ephemeral Data Capacity

Application Type

0.4- —— gg-cmake
Dlstr|!:)ut'ed - 0.85GB
Compilation
0.0 .) - ST - - :
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
7S . A
co A —— sortl00GB
(W) 5.0 A
MapReduce = ,,, : 100 GB
— 257 '\\
O Al
F o oo
0 10 20 30
15
P —— video-analytics
1.0] \
Video Analytics os A~ i 6 GB
NI AY, VI -
0.0 e el e e ran =
0 5 10 15 20 25 30 35 40

Time (s)

18 Understanding Ephemeral Storage for Serverless Analytics. Ana Klimovic, Yawen Wang,
Christos Kozyrakis, Patrick Stuedi, Jonas Pfefferle, Animesh Trivedi. ATC’18, 2018.

https://www.usenix.org/system/files/conference/atc18/atc18-klimovic-serverless.pdf

Requirements for Ephemeral Storage

7 Need high throughput (for large objects) and low latency (for small objects).

CDF

1.0

0.8

0.6

0.4

0.2

1 A-cc cmake
L __1 video analytics
""" : sort100GB

105 10* 10° 10°
Ephemeral Object Size (bytes)

107

108

Object sizes vary from
100s of bytes to 100s of MBs

Requirements for Ephemeral Storage

0 Need automatic resource scaling and storage technology awareness

0 Example of performance-cost tradeoff for a serverless video analytics jobs
with different ephemeral data store configurations

SDC

Execution Time (s)

800

600

400

200

® DRAM & NVMe Flash HDD

0.05 0.1 0.15 0.2

Resource usage cost ($/hr)

Finding the Pareto optimal resource
allocation is non-trivial...and gets
harder with multiple jobs.

Requirements for Ephemeral Storage

0 Do not need high fault tolerance, contrary to traditional storage systems

0 Fault tolerance is typically baked into application frameworks

1.0

0.8

0.6

CDF

0.4
0.2

0.0

SDC

[——1 A-cc cmake
! video-analytics
St sort 100 GB

20 40 60 80 100
Ephemeral Object Lifetime (seconds)

Ephemeral data has short
lifetime; it is only valuable
during job execution

Requirements for Ephemeral Storage

Summary:
I. High performance for a wide range of object sizes
2. Automatic resource scaling with storage technology awareness

3. Fault-(in)tolerance

SDC

Pocket AN\

3 An elastic, distributed data store for ephemeral data sharing in
serverless analytics

0 Key properties:

High throughput, low latency for a wide range of object sizes [Performance]
Automatic resource scaling and rightsizing [Cost, scalability]

Intelligent data placement across multiple storage tiers [Cost]

0 Pocket achieves similar performance to Redis, an in-memory key value
store, while saving ~60% in cost for various serverless analytics jobs

SDC

Pocket

0 Design principles:
Separation of responsibilities: control, metadata, and data
plane can each be scaled independently

Sub-second response time: storage servers optimized for
fast, simple 1/O operations

Multiple storage tiers: use DRAM, Flash, and/or HDD to
meet application I/O requirements at low cost

18 Pocket: Elastic Ebhemeral Storage for Serverless Analytics. Ana Klimovic, Yawen Wang,
Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Christos Kozyrakis. OSDI’18, 2018.

https://www.usenix.org/conference/osdi18/presentation/klimovic

Pocket: System architecture

~

Controller
app-driven resource
allocation & scaling

Metadata server(s)
request routing

Storage server Storage server Storage server Storage server

CPU CPU CPU CPU

Net Net Net Net

HDD Flash DRAM DRAM
SDC

Pocket: System architecture

Job A Job B Job C
AANAAAANA AAAAAN 7 AANAAAAAAAA
AAAAAANA AAAAN AAAAAAAAAANA

I Regis}grj'db N
<« o
antroller Metadata server(s)
app-driven resource | > request routing
allocation & scaling ii. Allocate & assign

resources for job

Storage server Storage server Storage server Storage server

CPU CPU CPU CPU

Net Net Net Net

HDD Flash DRAM DRAM
SDC

Pocket: System architecture

Job A Job B Job C
NOMAAL i ki [STRITAR
AAAAAANA AAAAN AAAAAAAAAAA e e
PUT ‘x’ 1! \ 2 data lifetime
) '| >
<« in .) |
antroller iii. Dgreg|ster Metadata server(s)
app-driven resource job ,
)) request routing
allocation & scaling

Storage server Storage server Storage server

CPU CPU CPU
Net Net Net
HDD Flash DRAM

SDC

Storage server
CPU
Net

DRAM

Resource allocation

Optional hints about job attributes:

Job A g "
* Latency sensitivity
AAANAAAA * Maximum # of concurrent lambdas
* Total ephemeral data capacity

ANAAAANA

» Peak aggregate bandwidth required

|. Throughput allocation
2. Capacity allocation
3. Choice of storage tier(s)

"-_ i. Register job

~

Controller '~
app-driven resource

allocation & scaling i. Allocate & assign

Metadata server(s)
request routing

resources for job

Storage server Storage server

CPU CPU CPU
Net Net Net
HDD Flash DRAM

Storage server

SDC

Storage server
CPU
Net

DRAM

Resource assignment

Job A
AAAAAAA
AA)\A_A)\A

"-_ i. Register job

Controller *
app-driven resource
allocation & scaling

Ii. Allocate & assign
resources for job

Storage server A Storage server B

|. Throughput allocation
2. Capacity allocation
3. Choice of storage tier(s)

‘ online bin-packing algorithm

Job Weight Map Job A:

~

Metadata server(s)
request routing

Storage server C

Server C 2
Server D > [

Job B:

Server A 2
Server B 2
Server C 2

CPU

Storage server D

CPU CPU CPU
Net Net Net Net
HDD Flash DRAM DRAM

SDC

Elastic Rightsizing

3 The controller continuously monitors cluster resource utilization
Nodes send CPU, network bandwidth, and storage capacity usage every second

0 The controller scales resources dynamically as jobs register and deregister
Policy: keep CPU, network bandwidth and storage tier capacity utilization
within a target range (e.g., 60-80%)
Mechanism: use weight map to balance load by steering data for incoming jobs
onto active storage nodes and away from nodes that will be taken down

SDC

Elastic Rightsizing

3 The controller continuously monitors cluster resource utilization
Nodes send CPU, network bandwidth, and storage capacity usage every second

0 The controller scales resources dynamically as jobs register and deregister
Policy: keep CPU, network bandwidth and storage tier capacity utilization
within a target range (e.g., 60-80%)
Mechanism: use weight map to balance load by steering data for incoming jobs
onto active storage nodes and away from nodes that will be taken down

Storage server A Storage server B Storage server C torage server D
CPU CPU CPU CPU
Net Net Net Net

HDD . Flash DRAM DRAM

SDC

Implementation

O Pocket’s storage and metadata server implementation is based on
the Apache Crail distributed storage system

0 We use ReFlex for the Flash storage tier

0 Pocket runs the storage and metadata servers in containers,
orchestrated using Kubernetes

SDC

Apache €

O High-performance distributed data store designed for ephemeral
data sharing in distributed data processing frameworks (e.g., Spark)

3 Originally designed to leverage high-performance RDMA networks

O Pluggable storage tiers and network processing layers

5 Compute

Data Processing

Crail Store (Core)

BlkDev
RDMA RDMA GPU iSCslI
read/write fabrics direc! RDMA

~@’ s Storage
S D @ https://crail.incubator.apache.org/

https://crail.incubator.apache.org/

ReFlex

0 Software for fast access to NVMe Flash over commodity networks

|. Low latency, high throughput with low compute overhead:
Direct access to NIC and NVMe queues from userspace
Polling-based, run to completion execution model
Minimal data copying; forward data directly between NIC and Flash
Adaptive batching

2. Predictable performance on shared Flash with QoS-aware /O scheduler
Enforce throughput and tail latency SLOs for tenants sharing Flash

Provide isolation to mitigate read/write request interference

www.github.com/stanford-mast/reflex

|8 ReFlex: Remote Flash == Local Flash. Ana Klimovic, Heiner Litz, Christos Kozyrakis.
ASPLOS’17, 2017. Memorable Paper Award at NVM’18.

http://www.github.com/stanford-mast/reflex
http://www.github.com/stanford-mast/reflex
http://www.github.com/stanford-mast/reflex
https://web.stanford.edu/~anakli/pdf/reflex.pdf
https://web.stanford.edu/~anakli/pdf/reflex.pdf

Pocket deployment

0 We deploy Pocket on Amazon Web Services (AWS) EC2

Pocket Controller / mb5.xlarge

Metadata server oo
O0Op
DRAM server r4.2xlarge u\i>

Amazon EC2

NVMe Flash server i3.2xlarge

0 We use AWS Lambda as our serverless platform

SDC

Latency

30000

| KB request access from AWS Lambda client

e PUT

e GET
20000;

Latency (us)

10000
—

2000

1000;

232 230

S3 Redis Pocket Pocket Pocket Pocket
DRAM NVMe SSD HDD

SDC

Throughput scaling

| MB requests from 100 concurrent lambdas

e}
= | == s3
) —o— Redis
‘“-’4- —#— Pocket-DRAM
-
>S5 —&— Pocket-NVMe
_g— —#k— Pocket-SSD-i2.2xI
D 3| -*- Pocket-SSD-i2-8xl e ——— . *
3 | —— PocketHDD A e
| -
c
N *
GJ - - ';-.-—‘ ————————————————
= | e
=. | =
ol & &
= | e ———*
E o e
e A .
30 — o . .
@) : : : : :
1 2 3 4 §)

Number of nodes

Reach AWS Lambda
per-A network limit

With 2 nodes, Pocket-
NVMe and Pocket-
DRAM offer higher
throughput than S3

SATA/SAS-based SSD
and HDD tiers offer
significantly lower
throughput

Rightsizing with hints

1.21 E®A No Knowledge M& Latency Sensitivity
@8 Num Lambdas @ Data Capacity + Peak Throughput

1.0

Provision based on
. per-A network limit

0.8

Use Flash instead of
DRAM since not
latency sensitive

/

—(Use Flash instead of
DRAM since not

~_latency sensitive

0.6

0.4

0.2

Normalized Resource Cost
($/hr)

0.0

SDC

Sort Video Analytics

34

Rightsizing with multiple jobs

- == Total GB/s allocated
- Total GB/s used

(%)}

e

the requirements of

The controller elastically
scales resources to meet
multiple jobs
g ple]

e

N
I
1

Throughput (GB/s)
w

h .

:

0 50 100 150 200 250 300 350
| | | Timels) | l
Jobl Jobl Job2 Job3 Job3 Job2

SDC

Execution time for 100 GB sort job

100-

= (*)} o0}
o o o

N
o

Average Time per Lambda (s)

SDC

S3

S3 does not provide
sufficient throughput

Eam Compute

B S31/0
] W Ephemeral Data I/O

S3 request rate
limit errors for
500+ lambdas

Redis Pocket-NVMe

250 lambdas 500

Redis Pocket-NVMe

Redis Pocket-NVMe

lambdas 1000 lambdas

Execution time for 100 GB sort job

100-

0) % S31/0

r}S 80 M Compute

c W2 Ephemeral Data I/O

i

o 607 Pocket-NVMe
o achieves similar
£ 40 performance to Redis
|_

() /

o

© 20

[

>

<<

S3

SDC

Redis Pocket-NVMe Redis Pocket-NVMe Redis Pocket-NVMe
250 lambdas 500 lambdas 1000 lambdas

Cost analysis

0 Pocket leverages job attribute hints for cost-effective resource allocation and
amortizes VM costs across multiple jobs, offering a pay-what-you-use model

3 S3 is much cheaper but the cost comparison is not fair as S3 pricing is based
on cloud provider resource costs vs. cloud customer resource costs

®m S3 ® Redis Pocket (with throughput & capacity hints)

Pocket reduces cost
4 by ~60% compared
to Redis for all 3 jobs

Job Execution Cost ($/hr)

0 . .

Sort Video analytics Lambda-cc

SDC

Future work

0 Autonomously learn application characteristics across jobs
0 Use slack resources in the datacenter to run ephemeral storage nodes

0 Explore other use cases for distributed ephemeral storage, beyond
serverless computing

SDC

Conclusion

0 Pocket is a distributed ephemeral storage system providing:
Low latency, high throughput
Automatic resource scaling

Intelligent data placement across nodes

7 We designed Pocket for ephemeral data sharing in serverless

analytics. However, Pocket can be used more generally for
applications requiring an elastic, distributed /tmp.

www.github.com/stanford-mast/pocket

SDC

http://www.github.com/stanford-mast/pocket
http://www.github.com/stanford-mast/pocket
http://www.github.com/stanford-mast/pocket

