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Serverless Computing 

 Serverless computing enables users to launch short-lived tasks 

with high elasticity and fine-grain resource billing  
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Serverless Computing 

 Serverless computing enables users to launch short-lived tasks 

with high elasticity and fine-grain resource billing  

 This also makes serverless appealing for interactive analytics 

 

 The challenge: serverless tasks (lambdas) need an efficient way 

to communicate intermediate data between execution stages 

 

ephemeral data 
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In traditional analytics… 

 Ephemeral data is exchanged directly between tasks 
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In serverless analytics… 

 Direct communication between lambdas is difficult:  

 Lambdas are short-lived and stateless 

 Users have no control over lambda scheduling 
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In serverless analytics… 

 The natural approach for sharing ephemeral data is through a 

common data store  
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In serverless analytics… 

 The natural approach for sharing ephemeral data is through a 

common data store  

 However, existing storage systems do not meet the elasticity, 

performance and cost demands of serverless analytics jobs  
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Requirements for Ephemeral Storage 

High throughput and IOPS 

due to high parallelism: 

lambdas each compile 

independent files  

Final stage lambdas are serialized 

as they depend on prior lambdas 

→ low parallelism, low I/O rate 

Understanding Ephemeral Storage for Serverless Analytics.  Ana Klimovic, Yawen Wang, 

Christos Kozyrakis, Patrick Stuedi, Jonas Pfefferle, Animesh Trivedi.  ATC’18, 2018. 

 

 

https://www.usenix.org/system/files/conference/atc18/atc18-klimovic-serverless.pdf
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Requirements for Ephemeral Storage 

 Need high throughput (for large objects) and low latency (for small objects).  

Object sizes vary from  

100s of bytes to 100s of MBs 
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Requirements for Ephemeral Storage 

 Need automatic resource scaling and storage technology awareness 

 Example of performance-cost tradeoff for a serverless video analytics jobs 

with different ephemeral data store configurations  

 

Finding the Pareto optimal resource 

allocation is non-trivial…and gets 

harder with multiple jobs. 
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Requirements for Ephemeral Storage 

 Do not need high fault tolerance, contrary to traditional storage systems 

 Fault tolerance is typically baked into application frameworks 

Ephemeral data has short 

lifetime; it is only valuable 

during job execution 



18 

Requirements for Ephemeral Storage 

Summary: 

1. High performance for a wide range of object sizes 

2. Automatic resource scaling with storage technology awareness 

3. Fault-(in)tolerance 
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Pocket 

 An elastic, distributed data store for ephemeral data sharing in 

serverless analytics  
 

 Key properties: 

 High throughput, low latency for a wide range of object sizes 

 Automatic resource scaling and rightsizing 

 Intelligent data placement across multiple storage tiers 
 

 Pocket achieves similar performance to Redis, an in-memory key value 

store, while saving ~60% in cost for various serverless analytics jobs 

[Performance] 

[Cost, scalability] 

[Cost] 
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Pocket 

 Design principles: 

 Separation of responsibilities: control, metadata, and data 

plane can each be scaled independently  

 Sub-second response time: storage servers optimized for 

fast, simple I/O operations 

 Multiple storage tiers: use DRAM, Flash, and/or HDD to 

meet application I/O requirements at low cost 

Pocket: Elastic Ephemeral Storage for Serverless Analytics. Ana Klimovic, Yawen Wang, 

Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, Christos Kozyrakis. OSDI’18, 2018. 

 

 

https://www.usenix.org/conference/osdi18/presentation/klimovic
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Resource allocation 
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i. Register job 

ii. Allocate & assign 

resources for job 

Optional hints about job attributes: 
 Latency sensitivity 

 Maximum # of concurrent lambdas 

 Total ephemeral data capacity 

 Peak aggregate bandwidth required 

1. Throughput allocation 

2. Capacity allocation 

3. Choice of storage tier(s) 
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Resource assignment 
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Elastic Rightsizing 

 The controller continuously monitors cluster resource utilization 

 Nodes send CPU, network bandwidth, and storage capacity usage every second 

 The controller scales resources dynamically as jobs register and deregister 

 Policy: keep CPU, network bandwidth and storage tier capacity utilization 

within a target range (e.g., 60-80%) 

 Mechanism: use weight map to balance load by steering data for incoming jobs 

onto active storage nodes and away from nodes that will be taken down 
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Implementation 

 Pocket’s storage and metadata server implementation is based on 

the Apache Crail distributed storage system 

 We use ReFlex for the Flash storage tier 

 Pocket runs the storage and metadata servers in containers, 

orchestrated using Kubernetes 
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Apache Crail 

 High-performance distributed data store designed for ephemeral 

data sharing in distributed data processing frameworks (e.g., Spark) 

 Originally designed to leverage high-performance RDMA networks 

 Pluggable storage tiers and network processing layers 

 

https://crail.incubator.apache.org/   

https://crail.incubator.apache.org/
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ReFlex 

 Software for fast access to NVMe Flash over commodity networks 

     1. Low latency, high throughput with low compute overhead: 

 Direct access to NIC and NVMe queues from userspace 

 Polling-based, run to completion execution model  

 Minimal data copying; forward data directly between NIC and Flash 

 Adaptive batching 

 

     2. Predictable performance on shared Flash with QoS-aware I/O scheduler  

 Enforce throughput and tail latency SLOs for tenants sharing Flash 

 Provide isolation to mitigate read/write request interference 

www.github.com/stanford-mast/reflex  

ReFlex: Remote Flash == Local Flash. Ana Klimovic, Heiner Litz, Christos Kozyrakis. 

ASPLOS’17, 2017. Memorable Paper Award at NVM’18. 

 

 

http://www.github.com/stanford-mast/reflex
http://www.github.com/stanford-mast/reflex
http://www.github.com/stanford-mast/reflex
https://web.stanford.edu/~anakli/pdf/reflex.pdf
https://web.stanford.edu/~anakli/pdf/reflex.pdf
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Pocket deployment 

 We deploy Pocket on Amazon Web Services (AWS) EC2 

 

 

 

 

 

 We use AWS Lambda as our serverless platform 

Pocket Controller / 

Metadata server 

m5.xlarge 

DRAM server r4.2xlarge 

NVMe Flash server i3.2xlarge 
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Latency 
1 KB request access from AWS Lambda client 
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Throughput scaling 

Reach AWS Lambda 

per-λ network limit 

1 MB requests from 100 concurrent lambdas 

SATA/SAS-based SSD 

and HDD tiers offer 

significantly lower 

throughput  

With 2 nodes, Pocket-

NVMe and Pocket-

DRAM offer higher 

throughput than S3 
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Rightsizing with hints 

Provision based on 

per-λ network limit 

Use Flash instead of 

DRAM since not 

latency sensitive 

Use Flash instead of 

DRAM since not 

latency sensitive 
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Rightsizing with multiple jobs 

The controller elastically 

scales resources to meet 

the requirements of 

multiple jobs  
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Execution time for 100 GB sort job 

S3 does not provide 

sufficient throughput 

S3 request rate 

limit errors for 

500+ lambdas 
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Execution time for 100 GB sort job 

Pocket-NVMe 

achieves similar 

performance to Redis 
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Cost analysis 
 Pocket leverages job attribute hints for cost-effective resource allocation and 

amortizes VM costs across multiple jobs, offering a pay-what-you-use model  

 S3 is much cheaper but the cost comparison is not fair as S3 pricing is based 

on cloud provider resource costs vs. cloud customer resource costs 

  (with throughput & capacity hints) 

Pocket reduces cost 

by ~60% compared 

to Redis for all 3 jobs 
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Future work 

 Autonomously learn application characteristics across jobs 

 Use slack resources in the datacenter to run ephemeral storage nodes 

 Explore other use cases for distributed ephemeral storage, beyond 

serverless computing 
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Conclusion 

 Pocket is a distributed ephemeral storage system providing:  

 Low latency, high throughput  

 Automatic resource scaling  

 Intelligent data placement across nodes 
 

 We designed Pocket for ephemeral data sharing in serverless 

analytics. However, Pocket can be used more generally for 
applications requiring an elastic, distributed /tmp. 
 

www.github.com/stanford-mast/pocket  

http://www.github.com/stanford-mast/pocket
http://www.github.com/stanford-mast/pocket
http://www.github.com/stanford-mast/pocket

