Pocket: Elastic Ephemeral Storage for Serverless Analytics

Ana Klimovic*, Yawen Wang*, Patrick Stuedi+, Animesh Trivedi+, Jonas Pfefferle+, Christos Kozyrakis*

*Stanford University, +IBM Research
Serverless Computing

- Serverless computing enables users to launch short-lived tasks with **high elasticity** and **fine-grain resource billing**
Serverless computing enables users to launch short-lived tasks with **high elasticity** and **fine-grain resource billing**.

This also makes serverless appealing for **interactive analytics**.

User query & input data →

Result
Serverless computing enables users to launch short-lived tasks with *high elasticity* and *fine-grain resource billing*

This also makes serverless appealing for *interactive analytics*.

User query & input data → Result
Serverless Computing

- Serverless computing enables users to launch short-lived tasks with *high elasticity* and *fine-grain resource billing*.
- This also makes serverless appealing for *interactive analytics*.

- **The challenge**: serverless tasks (*lambdas*) need an efficient way to communicate intermediate data between execution stages.
In traditional analytics…

- Ephemeral data is exchanged directly between tasks

mapper\textsubscript{0} \quad \text{mapper}_1 \quad \text{mapper}_2 \quad \text{mapper}_3

\quad \text{reducer}_0 \quad \text{reducer}_1
In traditional analytics…

- Ephemeral data is exchanged directly between tasks

mapper_0

mapper_1

mapper_2

mapper_3

reducer_0

reducer_1
In serverless analytics…

- Direct communication between lambdas is difficult:
 - Lambdas are short-lived and stateless
 - Users have no control over lambda scheduling
In serverless analytics...

- Direct communication between lambdas is difficult:
 - Lambdas are short-lived and stateless
 - Users have no control over lambda scheduling
In serverless analytics...

- The natural approach for sharing ephemeral data is through a common data store

mapper_0
mapper_1
mapper_2
mapper_3

reducer_0
reducer_1
In serverless analytics...

- The natural approach for sharing ephemeral data is through a common data store.
- However, existing storage systems do not meet the elasticity, performance and cost demands of serverless analytics jobs.
Requirements for Ephemeral Storage

High throughput and IOPS due to high parallelism: lambdas each compile independent files

Final stage lambdas are serialized as they depend on prior lambdas → low parallelism, low I/O rate
Requirements for Ephemeral Storage

High throughput due to high I/O intensity and parallelism (up to 7.5 GB/s with 500 lambdas)

Ephemeral I/O Throughput: Write (dotted), Read (solid)

Ephemeral Data Capacity

- Distributed Compilation: 0.85 GB
- MapReduce: 100 GB

Requirements for Ephemeral Storage

Application Type

- Distributed Compilation
- MapReduce
- Video Analytics

Ephemeral I/O Throughput:
Write (dotted), Read (solid)

<table>
<thead>
<tr>
<th>Application Type</th>
<th>Ephemeral Data Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed Compilation</td>
<td>0.85 GB</td>
</tr>
<tr>
<td>MapReduce</td>
<td>100 GB</td>
</tr>
<tr>
<td>Video Analytics</td>
<td>6 GB</td>
</tr>
</tbody>
</table>

Requirements for Ephemeral Storage

- Need high throughput (for large objects) \textit{and} low latency (for small objects).

Object sizes vary from 100s of bytes to 100s of MBs.
Requirements for Ephemeral Storage

- Need automatic resource scaling and storage technology awareness
- Example of performance-cost tradeoff for a serverless video analytics jobs with different ephemeral data store configurations

Finding the Pareto optimal resource allocation is non-trivial...and gets harder with multiple jobs.
Requirements for Ephemeral Storage

- Do not need high fault tolerance, contrary to traditional storage systems
- Fault tolerance is typically baked into application frameworks

Ephemeral data has short lifetime; it is only valuable during job execution
Requirements for Ephemeral Storage

Summary:
1. High performance for a wide range of object sizes
2. Automatic resource scaling with storage technology awareness
3. Fault-(in)tolerance
Pocket

- An elastic, distributed data store for ephemeral data sharing in serverless analytics

- Key properties:
 - High throughput, low latency for a wide range of object sizes
 - Automatic resource scaling and rightsizing
 - Intelligent data placement across multiple storage tiers

- Pocket achieves similar performance to Redis, an in-memory key value store, while saving ~60% in cost for various serverless analytics jobs
Pocket

- Design principles:
 - **Separation of responsibilities**: control, metadata, and data plane can each be scaled independently
 - **Sub-second response time**: storage servers optimized for fast, simple I/O operations
 - **Multiple storage tiers**: use DRAM, Flash, and/or HDD to meet application I/O requirements at low cost
Pocket: System architecture

Controller
app-driven resource allocation & scaling

Metadata server(s)
request routing

Storage server
CPU
Net
HDD

Storage server
CPU
Net
Flash

Storage server
CPU
Net
DRAM

Storage server
CPU
Net
DRAM
Pocket: System architecture

Controller
app-driven resource allocation & scaling

i. Register job

Metadata server(s)
request routing

ii. Allocate & assign resources for job

Job A
λ λ λ λ λ λ λ
λ λ λ λ λ λ λ

Job B
λ λ λ λ λ
λ λ λ λ

Job C
λ λ λ λ λ λ λ
λ λ λ λ λ λ λ

Storage server
CPU
Net
HDD

Storage server
CPU
Net
Flash

Storage server
CPU
Net
DRAM

Storage server
CPU
Net
DRAM
Pocket: System architecture

Controller
app-driven resource allocation & scaling

iii. Deregister job

Storage server
- CPU
- Net
- HDD

Storage server
- CPU
- Net
- Flash

Storage server
- CPU
- Net
- DRAM

Storage server
- CPU
- Net
- DRAM

GET/PUT API accepts hints about job attributes and data lifetime

1. PUT ‘x’
2. PUT ‘x’
3. PUT ‘x’
Resource allocation

Job A

Optional hints about job attributes:
- Latency sensitivity
- Maximum # of concurrent lambdas
- Total ephemeral data capacity
- Peak aggregate bandwidth required

1. Throughput allocation
2. Capacity allocation
3. Choice of storage tier(s)

Controller
app-driven resource allocation & scaling

Storage server

Metadata server(s)
request routing

Controller
app-driven resource allocation & scaling

Storage server

Storage server

Storage server

Storage server

Metadata server(s)
request routing

i. Register job

ii. Allocate & assign resources for job

Optional hints about job attributes:
- Latency sensitivity
- Maximum # of concurrent lambdas
- Total ephemeral data capacity
- Peak aggregate bandwidth required

1. Throughput allocation
2. Capacity allocation
3. Choice of storage tier(s)
Resource assignment

Controller
app-driven resource allocation & scaling

i. Register job

ii. Allocate & assign resources for job

Job Weight Map

Job A:
Server C → 0.4
Server D → 0.6

Job B:
Server A → 0.2
Server B → 0.3
Server C → 0.5

1. Throughput allocation
2. Capacity allocation
3. Choice of storage tier(s)

online bin-packing algorithm

Storage server A

Storage server B

Storage server C

Storage server D
Elastic Rightsizing

- The controller continuously monitors cluster resource utilization
 - Nodes send CPU, network bandwidth, and storage capacity usage every second
- The controller scales resources dynamically as jobs register and deregister
 - **Policy**: keep CPU, network bandwidth and storage tier capacity utilization within a target range (e.g., 60-80%)
 - **Mechanism**: use weight map to balance load by steering data for incoming jobs onto active storage nodes and away from nodes that will be taken down
Elastic Rightsizing

- The controller continuously monitors cluster resource utilization
 - Nodes send CPU, network bandwidth, and storage capacity usage every second
- The controller scales resources dynamically as jobs register and deregister
 - **Policy**: keep CPU, network bandwidth and storage tier capacity utilization within a target range (e.g., 60-80%)
 - **Mechanism**: use weight map to balance load by steering data for incoming jobs onto active storage nodes and away from nodes that will be taken down

![Diagram of storage servers A, B, C, D showing CPU, Net, HDD, Flash, DRAM usage](image-url)
Implementation

- Pocket’s storage and metadata server implementation is based on the **Apache Crail** distributed storage system.
- We use **ReFlex** for the Flash storage tier.
- Pocket runs the storage and metadata servers in containers, orchestrated using **Kubernetes**.
Apache Crail

- High-performance distributed data store designed for ephemeral data sharing in distributed data processing frameworks (e.g., Spark)
- Originally designed to leverage high-performance RDMA networks
- Pluggable storage tiers and network processing layers

https://crail.incubator.apache.org/
ReFlex

- Software for fast access to NVMe Flash over commodity networks
 1. Low latency, high throughput with low compute overhead:
 - Direct access to NIC and NVMe queues from userspace
 - Polling-based, run to completion execution model
 - Minimal data copying; forward data directly between NIC and Flash
 - Adaptive batching
 2. Predictable performance on shared Flash with QoS-aware I/O scheduler
 - Enforce throughput and tail latency SLOs for tenants sharing Flash
 - Provide isolation to mitigate read/write request interference

www.github.com/stanford-mast/reflex

Pocket deployment

- We deploy Pocket on Amazon Web Services (AWS) EC2

<table>
<thead>
<tr>
<th>Pocket Controller / Metadata server</th>
<th>m5.xlarge</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAM server</td>
<td>r4.2xlarge</td>
</tr>
<tr>
<td>NVMe Flash server</td>
<td>i3.2xlarge</td>
</tr>
</tbody>
</table>

- We use AWS Lambda as our serverless platform
Latency

1 KB request access from AWS Lambda client

<table>
<thead>
<tr>
<th>Storage Type</th>
<th>PUT</th>
<th>GET</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3</td>
<td>25819</td>
<td>12102</td>
</tr>
<tr>
<td>Redis</td>
<td>232</td>
<td>230</td>
</tr>
<tr>
<td>Pocket DRAM</td>
<td>437</td>
<td>317</td>
</tr>
<tr>
<td>Pocket NVMe</td>
<td>539</td>
<td>422</td>
</tr>
<tr>
<td>Pocket SSD</td>
<td>604</td>
<td>516</td>
</tr>
<tr>
<td>Pocket HDD</td>
<td>712</td>
<td>1975</td>
</tr>
</tbody>
</table>
Throughput scaling

1 MB requests from 100 concurrent lambdas

- Reach AWS Lambda per-λ network limit
- With 2 nodes, Pocket-NVMe and Pocket-DRAM offer higher throughput than S3
- SATA/SAS-based SSD and HDD tiers offer significantly lower throughput
Rightsizing with hints

Provision based on per-\(\lambda \) network limit

Use Flash instead of DRAM since not latency sensitive

Use Flash instead of DRAM since not latency sensitive
Rightsizing with multiple jobs

The controller elastically scales resources to meet the requirements of multiple jobs.
Execution time for 100 GB sort job

S3 does not provide sufficient throughput

S3 request rate limit errors for 500+ lambdas
Execution time for 100 GB sort job

Pocket-NVMe achieves similar performance to Redis
Cost analysis

- Pocket leverages job attribute hints for cost-effective resource allocation and amortizes VM costs across multiple jobs, offering a pay-what-you-use model.
- S3 is much cheaper but the cost comparison is not fair as S3 pricing is based on cloud provider resource costs vs. cloud customer resource costs.

Pocket reduces cost by ~60% compared to Redis for all 3 jobs.
Future work

- Autonomously learn application characteristics across jobs
- Use slack resources in the datacenter to run ephemeral storage nodes
- Explore other use cases for distributed ephemeral storage, beyond serverless computing
Conclusion

- Pocket is a distributed ephemeral storage system providing:
 - Low latency, high throughput
 - Automatic resource scaling
 - Intelligent data placement across nodes

- We designed Pocket for ephemeral data sharing in serverless analytics. However, Pocket can be used more generally for applications requiring an elastic, distributed /tmp.

www.github.com/stanford-mast/pocket