
STATEFUL APPLICATIONS IN 

KUBERNETES: READY FOR 

PRODUCTION!

Niraj Tolia, Co-Founder

@nirajtolia / ntolia@kasten.io

Julio Lopez, Member of Technical Staff

@julio5524 / julio@kasten.io



Kubernetes

Container Orchestration: 

Automated Deployment, Scaling, & Management



Kubernetes, 
the greatest 
thing since 

sliced bread?



kubernetes
philosophy

page
04

Developer and Application Focused
Puts the needs of the application and 
developer first and optimizes for agility

Enforces Good DevOps Hygiene
Immutability, config as code, automation 
makes it easy to repave all infrastructure

Declarative Approach
A robust systems approach where the state of 
the world is reconciled with the expectation



key kubernetes
features

page
05

Self-Healing
Auto restart of unhealthy 

containers to match service levels

Auto Scaling
Scale applications up and 
down in response to load

Resource Utilization
Better bin packing for higher 

resource utilization

Portability
Isolates developers and applications 
from infrastructure

Deployment Options
Variety of upgrade deployment 
strategies w/ rollback options

Service Discovery
Familiar IP and DNS-based service 
discovery and load balancing



The Power of 
Community!



Kubernetes 
Concepts

(just the relevant bits)



(selected) kubernetes
concepts – cluster + nodes

page
08

Images: CC-BY 4.0, https://docs.kubernetes.io



(selected) kubernetes
concepts – master node

page
09

Images: CC-BY 4.0, https://docs.kubernetes.io



(selected) kubernetes
concepts – deployments

page
010

Images: CC-BY 4.0, https://docs.kubernetes.io



(selected) kubernetes
concepts – deployed app

page
011

Images: CC-BY 4.0, https://docs.kubernetes.io



Storage 

Options for 

Kubernetes



kubernetes portable storage abstractions
file and block focus

page
013

and more…



dynamic storage provisioning
for persistent storage

page
014

01 Self Service

Allow high developer velocity, no admin in 
the loop

02 Portable

No references to underlying storage 
provider. Allows application portability

03 On-Demand

Provisioned at time of use. Lifecycle can be 
tied to the application.



dynamic storage provisioning 
persistent volume (pv)

page
015

A Persistent Volume (PV) represents provisioned storage in the 
cluster (e.g., NFS, iSCSI, other block, etc.). A PV’s lifecycle is 

independent of the container/pod that uses it.



dynamic storage provisioning 
persistent volume claim (pvc)

page
016

kind: PersistentVolumeClaim
apiVersion: v1
metadata: 

name: my-claim 
spec: 

accessModes:
- ReadWriteOnce

resources: 
requests: 

storage: 8Gi
storageClassName: ssd



page
017

kind: Deployment
apiVersion: v1
metadata: 
name: my-app

spec:
template:
spec:
containers:
- name: app-container
image: alpine:3.7
command: ["my-app.sh"]
args: ["--datadir", "/data/my-app"]
volumeMounts:
- name: data-volume
mountPath: /data

volumes:
- name: data-volume
persistentVolumeClaim:
claimName: my-claim

kind: PersistentVolumeClaim
apiVersion: v1
metadata: 
name: my-claim 

spec: 
accessModes:
- ReadWriteOnce

resources: 
requests: 
storage: 8Gi

storageClassName: ssd

dynamic storage provisioning 
persistent volume claim (pvc)



dynamic storage provisioning
putting it all together

page
018

StorageClass (SC)PersistentVolumeClaim (PVC)

Volume mounted on node where Pod is scheduled
(based on Pod -> PVC -> PV mapping) 

Bind PVC to PV

PersistentVolume (PV)

Select 
SC

Select 
Provisioner

Create PV for 
new Volume

Storage Infrastructure

Volume

Create Volume

Node

App

Application
Definition



container storage interface
the path forward

page
019

Out of Tree

Independent Development and 
Release Cycles, Easier to Maintain

Standard Deployment

Common deployment interface using 
native Kubernetes primitives

File & Block

Standardized implementation 
APIs for using file and block

Cross-Orchestrator

Vendor friendly. Kubernetes, 
Mesos, CloudFoundry,

See Managing Disk Volumes in Kubernetes
SDC 2018 talk by Saad and Nikhil for more info!

https://sniasdc18.pathable.com/meetings/713091


page
020

data is important
• How does backup, recovery, and 

migrate work? See Kasten’s K10 

as an example!

• Resource contention concerns

• High-availability depends on 

instance coordination

• Frequent restarts/pre-empts 

destabilize service

resiliency is complex
• Instances are unique and are 

not interchangeable

• Access to persistent data is 

needed across restarts

state is meaningful

other operational concerns
scheduling, backup, restore, migration



Developer 

and Operator 

Support



StatefulSets
support for stateful applications

page
022

Stable Identifiers

Stable network identifiers for 

applications that depend on this

Stable Persistence

Includes persistent mapping across 

pod restarts and reschedules

Ordered Operations

Ordered and graceful deployment, 

scaling, termination

Update Operations

Rolling updates with restrictions



Observe

Analyze

Act

the operator design pattern
to deploy and manage apps

page
023

human ops knowledge → software

Support Complex Ops

Backups, Recovery, Scaling, 

Upgrades

Active Reconciliation

Reconcile desired vs. actual state

SDK-based

Easy to get started with multiple SDKs. 

Still a few sharp edges though.

Extensible

Developer-extensible via 

CustomResourceDefinitions



page
024

kanister: A framework for 
application-level data management

• Supports complex distributed applications
• Separates mechanism from policy/orchestration
• Allows for unified schedulers and monitoring
• Clean API allows for developer extensions

https://github.com/kanisterio



operator
high-level overview

page
025

Controller
Application

Action Request
(Custom Resource)



kanister operator example
postgresql backup

page
026

1. Object Creation

2. Base

Backup + Env

Setup

KubeExec

4. Status Update

Kanister 

Controller

Backup Request Object

(Custom Resource)

PostgreSQL + WAL-E

3. Base + WAL 

Shipping
Object Storage Kanister

Blueprints



kanister operator example
postgresql backup

page
027

1. Object Creation

2. Base

Backup + Env

Setup

KubeExec

4. Status Update

Kanister 

Controller

Backup Request Object

(Custom Resource)

PostgreSQL + WAL-E

3. Base + WAL 

Shipping
Object Storage Kanister

Blueprints



kanister
actionset (abridged) 

page
028

apiVersion: cr.kanister.io/v1alpha1
kind: ActionSet
spec:

actions:
- name: backup

blueprint: postgresql
object:

kind: StatefulSet
name: postgresql-cluster
namespace: default

configMaps:
...



kanister
blueprint (abridged) 

page
029

apiVersion: cr.kanister.io/v1alpha1
kind: Blueprint
actions:

backup:
type: StatefulSet
phases:
- func: KubeExec

args:
- '{{ .StatefulSet.Namespace }}'
- '{{ index .StatefulSet.Pods 0 }}'
- postgresql-tools-sidecar
- bash
- -c
- wal-e ...

- func: ...
restore:

...



other awesome
stateful operators

page
030

Look at the extensive list at
https://github.com/operator-framework/awesome-operators

and more…

https://github.com/operator-framework/awesome-operators


packaging your applications
helm: the kubernetes package manager

page
031

off-the-shelf stateful “charts”

Multiple community charts available for 
databases, NoSQL systems, and more.

supports composability

Enhance or restrict based on your goals. 
Compose stateful services within your apps.

organize settings

Easy-to-use mechanisms and a single place to 
codify your application’s configuration options.

$ helm install stable/postgresql
--set persistence.size=40Gi

--set persistence.storageClass=ssd

<your-app>/requirements.yaml
dependencies:
-name: postgresql



Upcoming 
Developments



cloud-native databases
cockroachdb, vitess, yugabyte, and more…

page
033

Reduces ops overhead by 
automatically handling 

system management tasks

self-managing
Fault-tolerance built in to 

support transparent 
self-healing infra

resilient
Auto-scaling built to 

respond to load and deliver 
predictable performance

scalable



local persistent volumes (beta)
local disks “done right”

page
034

Leverage Local Disks
For systems (Ceph, Cassandra, etc.) that 
work best on local storage

Common Primitives
Uses well-know PersistentVolume, 
PersistentVolumeClaim, StorageClass

Smarter Scheduling 
Smarter pod scheduling and volume 
binding compared to hostPath

Expose as Block
Not just file system access 
anymore



kubernetes and state
wrapping up

page
35

01 Platform Support
Equivalent features and concepts that 
made stateless successful

04 Increased Production Usage
50%+ users using stateful applications -
SIG-APPs Survey, Apr’18

02 Storage Vendor Choices
Large number of storage provider choices, 
CSI, Portability Abstractions

03 Relational / NoSQL Systems
Support from traditional relational and NoSQL 
systems. First-class operators. Cloud-Native DBs.Stateful is Ready for 

Production!



thank you


