
2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 1

Protocol-Aware Recovery for
Consensus-based Storage

Ramnatthan Alagappan
University of Wisconsin – Madison

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 2

Failures in Distributed Storage Systems

System crashes
Network failures

redundancy masks failures

System as a whole unaffected
data is available
data is correct

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 3

How About Faulty Data?

Data could be faulty
corrupted (disk corruption)
inaccessible (latent errors)

corrupted or
inaccessible

We call these storage faults

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 4

Storage Corruptions and Errors Are Real
Latent errors in 8.5%

of 1.5M drives
[Bairavasundaram07]

400K checksum
mismatches

[Bairavasundaram08]

SSD Failures in
Datacenters

[Narayanan16]

Flash Reliability
[Schroeder16]

Latent Sector Errors
[Schroeder10]

Corruption Due to
Misdirected Writes

[Kruikov08]

Firmware bugs,
media scratches etc.,

[Prabhakaran05]

Data Corruptions
[Panzer-Steindel07]

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 5

This talk…A “Measure-Then-Build” Approach

Part-1: Measure and understand how distributed systems react
to storage faults
Part-2: Build a new recovery protocol that correctly recovers
from storage faults (focus on RSM-based systems)

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 6

Part-1: Measure
Behavior of eight systems in response to file-system faults
Main result: redundancy does not imply fault tolerance

a single fault in one node can cause catastrophic outcomes
Silent

corruption Unavailability Data loss Reduced
redundancy

Query
failures

Redis X X X X X

ZooKeeper X X X

Cassandra X X X X

Kafka X X X

RethinkDB X X

MongoDB X

LogCabin X

CockroachDB X X X X

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 7

Why does Redundancy Not Imply Fault Tolerance?

Some fundamental problems across systems – not just bugs!

Faults are often undetected locally – leads to harmful global effects

Crashing is the common action – redundancy underutilized

Crash and corruption handling are entangled – data loss

Unsafe interaction between local behavior and global distributed
protocols can spread corruption or data loss

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 8

Part-2: Build

How to recover from storage faults?
Solve in an important class of systems: RSM

based on Paxos, Raft (e.g., ZooKeeper, etcd)

CTRL (Corruption-Tolerant RepLication)
safe and highly available with low performance overhead
applied to LogCabin and ZooKeeper
experimentally verified guarantees and little overheads (4%-8%)

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 9

Outline

Introduction
Part-1: Measure
Part-2: Build
Summary
Conclusion

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 10

Request

Fault Model

Server 1 Server 2 Server 3Client

File System

re
ad

/
w

ri
te

A single fault to a single file-system block in a single node

Faults injected only to user data not filesystem metadata

Fault for current
run:
server 1, block B1
read corruption

Fault for next run:
server 1, block B1
read error

File System

re
ad

/
w

ri
te

File System

re
ad

/
w

ri
te

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 11

Request

Fault Model: ext4 and btrfs

Server 1 Server 2 Server 3Client

C
or

ru
pt

da

ta
C

or
ru

pt

da
ta

Ext4: disk
corruption →
corrupted data to
apps

Btrfs: disk
corruption → I/O
error to apps

File System File System File Systemext4 ext4ext4 btrfsbtrfs btrfs

I/O

Er
ro

r

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 12

Read

Fault Injection Methodology - Errfs

Server 1 Server 2 Server 3Client

File System

Fault for current
run:
server 1, block B1
read corruption

File SystemFile Systemerrfs (FUSE FS)errfs (FUSE FS) errfs (FUSE FS)
read

B1-B4

read
B1-B4

return
B1-B4

return
B1’-B4

errfs - a FUSE file system to inject file-system faults

Local Behavior
Crash
Retry
Ignore faulty data
No detection/recovery Global Effect

Corruption, Data loss, Unavailability

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 13

Behavior Inference Methodology

Server: server 1
Block: logical data structure X
Fault: read corruption
Workload: read

Local Behavior: Crash
Global Effect: None

Server: server 2
Block: logical data structure Y
Fault: write error
Workload: write

Local Behavior: Ignore faulty data
Global Effect: Data loss

Repeat for other blocks, other servers, other faults for different workloads
Fault Behavior

Observed

Run 1

Run 2

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 14

System Behavior Analysis
Behavior of eight distributed systems to file-system faults
Metadata stores: ZooKeeper, LogCabin
Wide column store: Cassandra
Document stores: MongoDB
Distributed databases: RethinkDB, CockroachDB
Message Queues: Kafka

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 15

Follower

Follower

Leader

An Example: Redis

redis_database

redis_database

redis_database

appendonlyfile

appendonlyfile

appendonlyfile

Client
Write

Redis is a popular data structure store

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 16

Redis: Analysis

Corrupt Read
I/O Error

L LF F

On-disk Structures

Local Behavior
Read Workload

LeaderL
FollowerF Crash

On-disk Structures

appendonlyfile.metadata

appendonlyfile.data

redis_database.block_0

redis_database.metadata

redis_database.userdata

Global
Effect

Corrupt Read
I/O Error

L LF F

Local Behavior

Global Effect

Unavailability
Reduced
Redundancy

No Detection/
No Recovery

Corruption

Retry

Write
Unavailability

Correct

No checksums to detect corruption
Leader crashes due to failed deserialization
No automatic failover - cluster unavailable
No checksums to detect corruption
Leader returns corrupted data on queries
Corruption propagation to followers

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 17

Other Systems

Metadata stores: ZooKeeper, LogCabin
Wide column store: Cassandra
Document stores: MongoDB
Distributed databases: RethinkDB, CockroachDB
Message Queues: Kafka

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 18

Redundancy Does not Provide Fault Tolerance
Redis Read

Corrupt
Read
Error

txn_head
log.tail

ZooKeeper Write
Write Error

log.header
log.other
replication

L F L F

L F

L F L F

Kafka Read

aof.metadata
aof.data
rdb.metadata
rdb.userdata

RethinkDB Read

db.txn_head
db.txn_body
db.txn_tail
db.metablock

L F

Corruption

Write Unavailability

Data Loss

UnavailabilityCorrupt

Query
Failure

Cassandra ReadKafka Write

checkpoint
L F L F

Corrupt
Read
Error Corrupt

Read
Error

Corrupt
Read
Error

sstable.block0
sstable.metadata
sstable.userdata
sstable.index

Reduced Redundancy

Harmful global effects despite redundancy
Not simple implementation bugs - fundamental problems across multiple systems!

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 19

Why does Redundancy Not Imply Fault Tolerance?

Fundamental problems across systems – not just bugs!

Faults are often undetected locally – leads to harmful global effects

Crashing is the common action – redundancy underutilized

Crash and corruption handling are entangled – data loss

Unsafe interaction between local behavior and global distributed
protocols can spread corruption or data loss

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 20

Why does Redundancy Not Imply Fault Tolerance?

Faults are often undetected locally – leads to harmful global effects

Crashing is the common action – redundancy underutilized

Crash and corruption handling are entangled – data loss

Unsafe interaction between local behavior and global distributed
protocols can spread corruption or data loss

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 21

Crash and Corruption Handling are Entangled
Kafka Message Log

0

checksum data
1 2

Append(log, entry 2)

Checksum mismatch

Checksum mismatch

Action: Truncate log at 1

Disk corruption

Action: Truncate log at 0

Lose uncommitted data

Lose committed data!

0 1 2

Developers of LogCabin and RethinkDB agree entanglement is the problem

Need for discerning corruptions due to crashes
from other type of corruptions

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 22

Unsafe Interaction between Local & Global
Protocols

Disk corruption
Checksum mismatch
Action: Truncate log at 0
Lose committed data!0 1 2

Kafka: Message log at Node 1
Local

Behavior

0 1 2

Clien
t

Node1 Other Nodes

message:0
[Silent data loss]

READ

Truncate upto
message 0

0 1 2

Assertion failure

Failure

WRITE
(W=2)

Leader Followers
Set of in-sync replicas

Node1 with truncated log not
removed from in-sync replicas

Node 1 elected as leader

Need for synergy between local behavior and global protocol

Unsafe interaction between local behavior and leader election protocol leads to
data loss and write unavailability

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 23

Why does Redundancy Not Imply Fault Tolerance?
Redis Read

Corrupt
Read
Error

ZooKeeper
Write

Write Error

L F L F

L F

L F L F

Kafka Read

RethinkDB
Read

L F

Corrupt

Cassandra Read

Kafka Write

L F L F

Corrupt
Read
Error Corrupt

Read
Error

Corrupt
Read
Error

Faults are often locally undetected

Crashing on detecting faults is the
common reaction

Crash and corruption handling are
entangled

Unsafe interaction between local and
global protocols

Not simple implementation bugs - fundamental problems across multiple systems!
Redundancy underutilized as a source of recovery

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 24

Part-1 Summary
We analyzed distributed storage reactions to single file-system faults

Redis, ZooKeeper, Cassandra, Kafka, MongoDB, LogCabin, RethinkDB, and CockroachDB

Redundancy does not provide fault tolerance
A single fault in one node can cause data loss, corruption, unavailability, and spread of
corruption to other intact replicas

Some fundamental problems across multiple systems:
Faults are often undetected locally – leads to harmful global effects

On detection, crashing is the common action – redundancy underutilized

Crash and corruption handling are entangled – loss of committed data

Unsafe interaction between local behavior and global distributed protocols can spread
corruption or data loss

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 25

Outline

Introduction
Part-1: Measure
Part-2: Build
Summary
Conclusion

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 26

How to Recover Faulty Data?

A widely used approach: delete the data
on the faulty node and restart it

A server might not be able to read its database … because of some file
corruption in the transaction logs...in such a case, make sure all the other
servers in your ensemble are up and working.…go ahead and clean the
database of the corrupt server. Delete all the files in datadir... Restart the
server…

ZooKeeper fails to start? How can I fix?
Try clearing all the state in Zookeeper: stop Zookeeper
, wipe the Zookeeper data directory, restart it

corrupted
Looks reasonable: redundancy will help

The approach seems intuitive and
works - all good, right?

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 27

Unfortunately, No…Not So Easy!

Surprisingly, can lead to a global data loss!

This majority has no idea
about the committed data
Committed data is lost!

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 28

Problem: Approach is Protocol-Oblivious

The recovery approach is oblivious
to the underlying protocols

used by the distributed system

e.g., the delete + rebuild approach was oblivious to the
protocol used by the system to update the replicated data

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 29

Our Proposal: Protocol-Aware Recovery (PAR)

e.g., is there a dedicated leader? constraints on leader election? how is the
replicated state updated? what are the consistency guarantees?

We call such an approach protocol-aware

To safely recover, a recovery approach should
be carefully designed based on

properties of underlying protocols
of the distributed system

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 30

Why RSM?
most fundamental piece in building reliable distributed systems
many systems depend upon RSM

protecting RSM will improve reliability of many systems

A hard problem
strong guarantees, even a small misstep can break

Focus: PAR for Replicated State Machines (RSM)

Chubby
GFS

Colossus
BigTable

ZooKeeper

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 31

RSM: a paradigm to make a program/state machine more reliable

RSM Overview

key idea: run on many servers,

State Machine

C B A
inputs

Same
state/

Output

same initial state,
will produce same outputs

same sequence of inputs,

clients
State Machine

State Machine

State Machine

State Machine

A consensus algorithm (e.g., Paxos, Raft, or ZAB)
ensures SMs process commands in the same order

Always correct and available if a
majority of servers are functional

Pa
xo

s/
R

af
t

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 32

A

C
on

se
ns

us State
Machine

LogD
IS

K
Replicated State Update

Le
ad

er

Snapshot
B

C

A

C
on

se
ns

us
Log Snapshot

B A

C
on

se
ns

us

Log Snapshot
B

CC

State
Machine

State
Machine

Command is committed
Safety condition: C must not
be lost or overwritten!

Fo
llo

w
er

Fo
llo

w
erACK ACK

apply to SM once
majority log the

command

R
es

ul
t

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 33

RSM Persistent Structures

Snapshot
A

Log
B C M

Metainfo

get corrupted data (e.g., ext2/3/4)
get error (e.g., any FS on latent errors,

btrfs on a corruption)

disk corruption or
latent sector errors

read access

File System

Log - commands are
persistently stored
Snapshots - persistent image of
the state machine

Metainfo - critical meta-data
structures (e.g., whom did I
vote for?)

specific to each node, should
not be recovered from
redundant copies on other
nodes

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 34

Two components
Local storage layer
Distributed recovery

Exploit RSM knowledge to correctly and quickly recover faulty data

Storage Layer

Distributed
Recovery

CTRL Overview

manage local data;
detect faults

recover from
redundant copies

M

Storage Layer

Distributed
Recovery

M

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 35

CTRL Guarantees

Committed data will never be lost
as long as one intact copy of a data item exists
correctly remain unavailable when all copies are faulty

Provide the highest possible availability

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 36

CTRL Local Storage
Main function: detect and identify

whether log/snapshot/metainfo faulty or not?
what is corrupted? (e.g., which log entry?)

Requirements
low performance overheads
low space overheads

An interesting problem: disentangling crashes and
corruptions in log

checksum mismatch due to crash or disk corruption?

Storage Layer

Distributed
Recovery

M

Distributed
Recovery

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 37
3

append()

Disk corruption
cannot truncate, may lose possibly committed data!

Crash during append
recovery: can truncate entry - unacknowledged

Current systems conflate the two conditions – always truncate

disk
corruption

Crash-Corruption Entanglement in the Log

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 38
3

Disentangling Crashes and Corruptions

Entry
Commit
record

If commit record present, but checksum mismatch, and a
subsequent entry present, then a corruption

however, if a subsequent entry is NOT present, then cannot
determine whether corruption or crash

Log

If commit record not present, but checksum mismatch, then
crashed in the middle of update – locally discard, skip recovery

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 39

Cannot Disentangle Last Entry Sometimes

last entry checksum
mismatch, when commit
record is present, could

be either
write(entry)

write(commit rec)

fsync(log)
Corruption Crash

If cannot disentangle, safely mark as corrupted
leave to distributed recovery to handle

persisted safely
later corrupted

Fundamental limitation, not specific to CTRL

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 40

Distributed
Log Recovery

CTRL Distributed Recovery

Storage Layer

Distributed
Recovery

Distributed
Log Recovery

Distributed
Snapshot Recovery

M
Distributed

Snapshot Recovery

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 41

Properties of Practical Consensus Protocols
Leader-based

single node acts as leader; all updates flow through the leader

Epochs
a slice of time; only one leader per slice/epoch
a log entry is uniquely qualified by its index and epoch

Leader completeness
leader guaranteed to have all committed data

Applies to Raft, ZAB, and most implementations of Paxos
CTRL exploits these properties to perform recovery

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 42

{

Decouple follower and leader recovery
Fixing followers is simple: can be fixed by leader because the
leader is guaranteed to have all committed data!

A B C
A B 3
A B C
1 B 3
A 2 C

Leader

Followers

Follower Log Recovery

index = 2
epoch = e

A C
A B 3
A C
1 B 3
A C

BL B A C
A B 3
A C
1 B
A B C

BL A B CC

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 43

A B C
A B 3
A B C
1 B 3
A 2 C

Fixing the leader is the tricky part
First, a simple case: some follower has the entry intact

Leader Log Recovery

Leader index = 3
epoch = e A B

A B 3
A B C
1 B 3
A 2 CC

A B
A B 3
A B C
1 B 3
A 2 C

CCA BB C

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 44

However, sometimes cannot easily recover the leader’s log

A B 3
A B
A B
A B
A B

Leader Log Recovery: Determining Commitment

Leader A B 3
A B
A B
A B
A B

Leader

C

Main insight: separate committed from uncommitted entries
must fix committed, while uncommitted can be safely discarded
discard uncommitted as early as possible for improved availability

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 45

Leader queries for a faulty entry
if majority say they don’t have the entry  must be an uncommitted
entry – can discard and continue
if committed then at least one node in the majority would have the
entry –can fix using that response

Leader Log Recovery: Determining Commitment

A B 3
A B
A B
A B
A B

L A B 3
A B
A B
A B
A B

C

C

A B 3
A B
A B
A B
A B

L

C
L

discard faulty,
continue

fix using a response (will get
at least one correct response

because it is committed)

either fix log or discard,
depending on order

2

1

21 before - fix
2 1before - discard

both
orders
safe!

do
n’

t
ha

ve

do
n’

t
ha

ve

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 46

Evaluation

We apply CTRL in two systems
LogCabin

based on Raft

ZooKeeper
based on ZAB

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 47

Reliability Experiments Example

A B C
A B C
A B C

D
D
D

file-system data blocks

Original
corruptions: 30% unsafe or unavailable
errors: 50% unavailable

CTRL
corruptions and errors: always safe and available

errors

log

corruptions

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 48

Reliability Experiments Summary

Targeted entriesFS data blocks

A B C
A B C

Lagging and crashed

A B C
A B C
A

all possible
combinations

(for thoroughness)

A B C
A B C
A B C

D
D
D AA B C

B C
A B C
A

A B C

A B C FS
 M

et
ad

at
a

Fa
ul

ts Un-openable files

Missing files

Improper sizes

Lo
g

Sn
ap

sh
ot

s A B C

A B C

A B C

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 49

Reliability Results Summary

Original systems
unsafe or unavailable in many cases

CTRL versions
safe always and highly available
correctly unavailable in some cases (when all copies are faulty)

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 50

Overheads (because CTRL’s storage layer writes additional information
for each log entry) – however, little: SSDs 4% worst case, disks: 8% to10%

Note: all writes, so worst-case overheads

Update Performance (SSD)

0

10000

20000

2 4 8 16 32

Th
ro

ug
hp

ut

(o
ps

/s
)

Clients

Original CTRL

Workload: insert entries (1K) repeatedly, background snapshots (ZooKeeper)

4%

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 51

Part-2 Summary

Recovering from storage faults correctly in a distributed
system is surprisingly tricky
Most existing recovery approaches are protocol-oblivious –
they cause unsafety and low availability
To correctly and quickly recover, an approach needs to be
protocol-aware
CTRL: a protocol-aware recovery approach for RSM

guarantees safety and provides high availability, with little
performance overhead

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 52

Summary

Part-1: measure how distributed storage systems react to
storage faults such as corruption and errors
Main result: redundancy does not imply fault tolerance, some
fundamental root causes

Part-2: build a new recovery protocol for RSM, CTRL, safe and
available, little overheads

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 53

Conclusions
Obvious things we take for granted in distributed systems:
redundant copies will help recover bad data or
redundancy  reliability are surprisingly hard to achieve
Protocol-awareness is key to use redundancy correctly to
recover bad data

need to be aware of what’s going on underneath in the system

However, only a first step: we have applied PAR only to RSM
other classes of systems (e.g., quorum-based systems) remain vulnerable

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 54

Research to Practice
Cords: Storage Corruption and Errors Tool

errfs – a fuse FS, a similar FS now part of Jepsen
similar methods applied by a few companies now (e.g., CockroachDB)

Available @ http://research.cs.wisc.edu/adsl/Software/

Related papers @ http://research.cs.wisc.edu/adsl/Publications/
Joint work with Aishwarya Ganesan, Andrea Arpaci-Dusseau, and
Remzi Arpaci-Dusseau

Thank you!

http://research.cs.wisc.edu/adsl/Software/
http://research.cs.wisc.edu/adsl/Publications/

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 55

Backup Slides

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 56

collections.header
collections.metadata
collections.data
index
journal.header
journal.other
storage_bson
wiredtiger_wt

Crashing - Common Local Reaction

56

Many systems that reliably detect fault simply crash on encountering faults

MongoDB
Block Corruption during Read Workloads

L F

epoch
epoch_tmp
myid
log.transaction_head
log.transaction_body
log.transaction_tail
log.remaining
log.tail

ZooKeeper

L F

Crash

Leader

Follower

L
F

Crashing leads to reduced redundancy and imminent unavailability
Persistent fault -- Requires manual intervention

Redundancy underutilized!

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 57

Current Approaches to Handling Storage Faults

Methodology
fault-injection study of practical systems (ZooKeeper, LogCabin,
etcd, a Paxos-based system)
analyze approaches from prior research

Protocol-oblivious
do not use any protocol knowledge

Protocol-aware
use some protocol knowledge but incorrectly or ineffectively

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 58

Crash
use checksums and catch I/O errors
crash the node upon detection
popular in practical systems
safe but poor availability

Protocol-Oblivious: Crash

B C
A B C
A B C
A B C
A B C

Restarting the node does not help
persistent fault, so remain in crash-restart loop
need error-prone manual intervention (can lead to safety
violations)

A B C
A B C
A B C
A B C

A B C
corrupted

failed

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 59

Truncate
truncate “faulty” portions upon detection

Protocol-Oblivious: Truncate

However, can lead to safety violations
A C A

detect using
checksums

B C
A B C
A B C

S
2

A B C
A B C

S
2

A B C
A B C

S
1

A,B,C silently lost!

A B C
A B C
A B C

S
1

S
4
S
5

S
3

S
2

A,B,C

committed

S2 - Leader S2, S3 crash; S1, S4,
S5 form a majority

S1 - Leader

Entry A
corrupted

at S1

truncates
faulty and all
subsequent

entries

X Y Z

X Y Z
X Y Z

X Y Z
X Y Z
X Y Z
X Y Z
X Y Z

S2, S3 follow
leader’s log,

removing A,B,C

2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved. 60

CTRL

Recovery Approaches Summary
Class Approach

Protocol-
oblivious

Protocol-
aware

NoDetection
Crash

Truncate
DeleteRebuild

MarkNonVote
[1]Reconfigure [2]

Byzantine FT

Safety
Perform-

ance
No

intervention
Fast

recovery
Low

complexity
Availa-
bility

No extra
nodes

NA

NA

NA

[1] Chandra et al., PODC ’07 [2] Bolosky et al., NSDI ‘11

	Protocol-Aware Recovery for �Consensus-based Storage
	Failures in Distributed Storage Systems
	How About Faulty Data?
	Slide Number 4
	This talk…A “Measure-Then-Build” Approach
	Part-1: Measure
	Why does Redundancy Not Imply Fault Tolerance?
	Part-2: Build
	Outline
	Fault Model	
	Fault Model: ext4 and btrfs	
	Fault Injection Methodology - Errfs	
	Behavior Inference Methodology
	System Behavior Analysis
	An Example: Redis
	Redis: Analysis
	Other Systems
	Redundancy Does not Provide Fault Tolerance
	Why does Redundancy Not Imply Fault Tolerance?
	Why does Redundancy Not Imply Fault Tolerance?
	Crash and Corruption Handling are Entangled
	Unsafe Interaction between Local & Global Protocols
	Why does Redundancy Not Imply Fault Tolerance?
	Part-1 Summary
	Outline
	How to Recover Faulty Data?
	Unfortunately, No…Not So Easy!
	Problem: Approach is Protocol-Oblivious
	Our Proposal: Protocol-Aware Recovery (PAR)
	Focus: PAR for Replicated State Machines (RSM)
	RSM Overview
	Slide Number 32
	Slide Number 33
	CTRL Overview
	CTRL Guarantees
	CTRL Local Storage
	Slide Number 37
	Slide Number 38
	Slide Number 39
	CTRL Distributed Recovery
	Properties of Practical Consensus Protocols
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Evaluation
	Reliability Experiments Example
	Reliability Experiments Summary
	Reliability Results Summary
	Update Performance (SSD)
	�Part-2 Summary�
	Summary
	�Conclusions�
	Research to Practice
	Backup Slides
	Crashing - Common Local Reaction
	Current Approaches to Handling Storage Faults
	Protocol-Oblivious: Crash
	Protocol-Oblivious: Truncate
	Slide Number 60

