September 24-27, 2018
Santa Clara, CA

www.storagedeveloper.org

Protocol-Aware Recovery for
Consensus-based Storage

Ramnatthan Alagappan
University of Wisconsin — Madison

Failures in Distributed Storage Systems

System crashes

Network failures

redundancy masks failures

System as a whole unaffected
data is available

data is correct

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Righ

How About Faulty Data?

Data could be faulty
corrupted (disk corruption)
inaccessible (latent errors)

We call these storage faults : Sag, corrupted or

! '~__/ inaccessible

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Righ

Storage Corruptions and Errors Are Real

Ma
Go(

Thes

ofits

Silent Data Corruption Is

Real

Here's something you never want to see:

& Deblan #12F &l

| . .
Pata corruption at massive scale

Testing copies=n resiliency

alert: not great.

I decided to see how well ZFS copies=n would stand up to on-disk corruption today. Spoiler

cant sample.
bthing!

p\W/

database crash that knocked the service offline

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved.

k By Robin Harris for Storage Bits | September 17, 2007 -- 21:01 GMT (14:01 PDT) | Topic: Data Centers

eople reacted with disbelief to my recent series on data corruption (see How data gets lost, 50 ways to
ur data and How Microsoft puts your data at risk), claiming it had never happened to them. Really?

This talk...A ‘“Measure-Then-Build” Approach

Part-1: Measure and understand how distributed systems react
to storage faults

Part-2: Build a new recovery protocol that correctly recovers
from storage faults (focus on RSM-based systems)

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Res

Part-1: Measure

Behavior of eight systems in response to file-system faults

Main result: redundancy does not imply fault tolerance

a single fault in one node can cause catastrophic outcomes

cof::Jepnttion Unavailability | Data loss relzlicrlltcllien(::y f?i:l:r:ays
Redis X X X X X
ZooKeeper X X X
Cassandra X X X X
Kafka X X X
RethinkDB X X
MongoDB X
LogCabin X
CockroachDB X X X X

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Rese

Why does Redundancy Not Imply Fault Tolerance?

Some fundamental problems across systems — not just bugs!

Faults are often undetected locally — leads to harmful global effects
Crashing is the common action — redundancy underutilized

Crash and corruption handling are entangled — data loss

Unsafe interaction between local behavior and global distributed
protocols can spread corruption or data loss

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Rese

Part-2: Build

How to recover from storage faults?

Solve in an important class of systems: RSM
based on Paxos, Raft (e.g.,, ZooKeeper, etcd)
CTRL (Corruption-Tolerant RepLication)
safe and highly available with low performance overhead

applied to LogCabin and ZooKeeper
experimentally verified guarantees and little overheads (47%-8%)

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reservec

Outline

Introduction
Part-1: Measure
Part-2: Build
Summary

Conclusion

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rig

Fault Model

Request Server | ¢==) Server 2 ¢=m————) Sarver 3

run: File System File System File System

server |,block Bl

Fault for next run:
server |, block Bl
read error

A single fault to a single file-system block in a single node

Client

read/
write
read/
write
read/
write

Fault for current

Faults injected only to user data not filesystem metadata

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Rese

Fault Model: ext4 and btrfs

Client Request Server | () Server 2 () Server 3

il

Ext4: disk
corruption —
corrupted data to

apps
Btrfs: disk %
corruption — /O

error to apps

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Rese

orrupt
data

Fault Injection Methodology - Errfs

errfs - a FUSE file system to inject file-system faults

l

Client

read return
Bl-B4 Bl’-B4

Fault for current

run:
server |,block Bl

lllllllllllllllllllllﬁ

read return
Bl-B4 Bl-B4

Local Behavior =
Crash
Retry

Ignore faulty data v
No detection/recovery *+., Global Effect

Corruption, Data loss, Unavailability

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserv

Behavior Inference Methodology

Repeat for other blocks, other servers, other faults for different workloads

Fault Behavior

Server:server | N Observed

R | Block: logical data structure X Local Behavior: Ignore faulty data

un Fault: read corruption Global Effect: Data loss

Workload: read
Server:server 2 N

Run 2 Block: logical data structureY Local Behavior: Crash
Fault: write error Global Effect: None
Workload: write

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights R

System Behavior Analysis

Behavior of eight distributed systems to file-system faults
Metadata stores: ZooKeeper, LogCabin

Wide column store: Cassandra

Document stores: MongoDB

Distributed databases: RethinkDB, CockroachDB
Message Queues: Kafka

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserv

An Example: Redis

Redis is a popular data structure store

redis_database

- e

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Mad

No Recovery

E Retry

| Leader E Local Behavior
Redis: Analysis F Follower ' [X] crash
Read Workload No Detection/
Local Behavior Global E’J

Ny,

': :‘ Unavailability

m Reduced
No checksums to detect corruption Redundancy
Leader returns corrupted data on queries Corruption

Corruption propagation to followers

Other Systems

Metadata stores: ZooKeeper, LogCabin
Wide column store: Cassandra
Document stores: MongoDB

Distributed databases: RethinkDB, CockroachDB
Message Queues: Kafka

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Rese

Redundancy Does not Provide Fault Tolerance

Redis Read Cassandra Read

Read Kafka Read Kafka Write
Corrup Error Read Read Corrupt :frai
Corrupt Error CO”’UP‘i Error °

sstable.blockO

() |/ 1/]og.header L H

].u -Tl aof.data log.oth N d
. ® og.other sstable.metadata
.’] .’,‘ rdb.metadata _]’] sstable.userdata

replication
IO 7] replication

sstable.index

.’:‘.[i rdb.userdata

Harmful global effects despite redundancy
Not simple |mplementat|on bugs - fundamental problems across multiple systems!

: | = Query
Etxn_head | [H)- db >n body i Data Loss) Failure
log.tail i 001 | db.txn_tail | . A -
L F ol db.metablocki Write Unavailability Reduced Redundancy
' L F :

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved.

Why does Redundancy Not Imply Fault Tolerance?

Fundamental problems across systems — not just bugs!

Faults are often undetected locally — leads to harmful global effects
Crashing is the common action — redundancy underutilized

Crash and corruption handling are entangled — data loss

Unsafe interaction between local behavior and global distributed
protocols can spread corruption or data loss

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Rese

Why does Redundancy Not Imply Fault Tolerance?

Faults are often undetected locally — leads to harmful global effects

Crashing is the common action — redundancy underutilized

Crash and corruption handling are entangled — data loss

Unsafe interaction between local behavior and global distributed
protocols can spread corruption or data loss

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Rese

Crash and Corruption Handling are Entangled
Kafka Message Log

Append*ntry 2)

Checksum mismatch

Action: Truncate log at |
checksum data &

Lose uncommitted data

Need for discerning corruptions due to crashes

from other type of corruptions

Action: Truncate log at 0

Lose committed data!

Developers of LogCabin and RethinkDB agree entanglement is the problem

Unsafe Interaction between Local & Global

PrOtOCOISKafka: Message log at Node | Disk corruption

s

Local

% Checksum mismatch
Behavior “ Z

7 Action:Truncate Iog at 0

Set of in-sync replicas . READ i
Nodel with truncated log not | !
removed from in-sync replicas LSEEEL 0 1 2 | o I 2
Y P [Silent data loss] Tawggte u _PtO
WRITE message g , :
Node | elected as leader = ; Assertion failure
(W=2)> |
Failure E

Unsafe interaction between local behawor and leader eIectlon- protocol leads to
data loss and write unavailability

S D C 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Res

Why does Redundancy Not Imply Fault Tolerance?

Redis Read
Read
CO""UP"I Error

Kafka Read KafkaWrite

Read Read

| Faults are often locally undetected
Corrupq Error Corrupq Error

Not simple implementation bugs - fundamental problems across multiple systems!
Redundancy underutilized as a source of recovery

Write Error

gg]7[Unsafe interaction between local and
L F : @ global protocols
i i) 4 i
: F I — - :

Part-1 Summary

We analyzed distributed storage reactions to single file-system faults
Redis, ZooKeeper, Cassandra, Kafka, MongoDB, LogCabin, RethinkDB, and CockroachDB

Redundancy does not provide fault tolerance

A single fault in one node can cause data loss, corruption, unavailability, and spread of
corruption to other intact replicas

Some fundamental problems across multiple systems:
Faults are often undetected locally — leads to harmful global effects
On detection, crashing is the common action — redundancy underutilized
Crash and corruption handling are entangled — loss of committed data

Unsafe interaction between local behavior and global distributed protocols can spread
corruption or data loss

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Rese

Outline

Introduction
Part-1: Measure
Part-2: Build
Summary

Conclusion

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All R

How to Recover Faulty Data?

A widely used approach: delete the data
on the faulty node and restart it

ZooKeeper fails to start? How can | fix?

-MClearlnéall the s étﬁ ééém ,h%ol.(i %eip and

A server might not be able to read its database ... because of some file
corruption in the transaction logs...in such a case, make sure all the other
servers in your ensemble are up and working....go ahead and clean the

database of the corrupt server. Delete all the files in datadir... Restart the
server...

corrupted .
Looks reasonable: redundancy will help

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights

Unfortunately, No...Not So Easy!

Surprisingly, can lead to a global data loss!

| This majority has no idea
mms—) about the committed data

Committed data is lost!

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Righ

Problem: Approach is Protocol-Oblivious

The recovery approach is oblivious
to the underlying protocols
used by the distributed system

e.g., the delete + rebuild approach was oblivious to the

protocol used by the system to update the replicated data

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Re

Our Proposal: Protocol-Aware Recovery (PAR)

To safely recover, a recovery approach should
be carefully designed based on
properties of underlying protocols
of the distributed system

e.g., is there a dedicated leader? constraints on leader election? how is the
replicated state updated? what are the consistency guarantees!?

We call such an approach protocol-aware

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Rese

Focus: PAR for Replicated State Machines (RSM)
Why RSM!?

most fundamental piece in building reliable distributed systems
many systems depend upon RSM

GFS . o8 kafka

Colossus d‘ Chubby HERSE » ZooKeeper
BigTable P o
CiEREEe
HOES

protecting RSM will improve reliability of many systems

A hard problem

strong guarantees, even a small misstep can break

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Rese

RSM Overview

RSM: a paradigm to make a program/state machine more reliable

key idea: run on many servers, same initial state, same sequence of inputs,
will produce same outputs ®

State Machine
L.l_.—li inputs 0

clients Em —
-

Always correct and available if a

majority of servers are functional

A consensus algorithm (e.g., Paxos, Raft, or ZAB)
ensures SMs process commands in the same order

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Rese

«—a
State Machine

o

<
(State Machine

°

o
(]
[a'd
=S~
(7))
O
X
(3]
(a1

Replicated State Update
L_.___li Command is committed

Safety condition: C must not
be lost or overwritten!

apply to SM once
majority log the
command

C

State g ACK te g ACK ate
Machine 0 Machine 0 Machine
(N 0 (N 0 (<N

E3 Consensus
E3 Consensus

E3 | Consensus

» DIsK Leader

D

@ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Rese

RSM Persistent Structures

get corrupted data (e.g., ext2/3/4)
get error (e.g., any FS on latent errors,

read ;ccess btrfs on a corruption) Log - commands are

: persistently stored
File System

Snapshots - persistent image of
the state machine

Metainfo - critical meta-data
structures (e.g., whom did |
vote for?)

- specific to each node, should
not be recovered from

disk corruption or
|atent sector errors redundant copies on other

nodes

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights R

CTRL Overview

Two components Distributed recover from - Distributed
Recovery redundant copies Recovery
Local storage layer
Distributed recovery Storage Layer | malnUSESSIRAE Storage Layer
detect faults

[(TAT1T1 [TTT11
(Zn@® (0@

Exploit RSM knowledge to correctly and quickly recover faulty data

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights

CTRL Guarantees

Committed data will never be lost
as long as one intact copy of a data item exists

correctly remain unavailable when all copies are faulty

Provide the highest possible availability

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Righ

CTRL Local Storage

Main function: detect and identify
- whether log/snapshot/metainfo faulty or not?
what is corrupted? (e.g., which log entry?)
Storage Layer Requirements

low performance overheads

low space overheads

An interesting problem: disentangling crashes and
corruptions in log

checksum mismatch due to crash or disk corruption?

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights

Crash-Corruption Entanglement in the Log

ap.*o
Crash during append

= recovery: can truncate entry - unacknowledged

7 disk

corruption

Disk corruption
= cannot truncate, may lose possibly committed data!

Current systems conflate the two conditions — always truncate

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reservi

Disentangling Crashes and Corruptions

Semm= Log

If commit record not present, but checksum mismatch, then
crashed in the middle of update — locally discard, skip recovery

If commit record present, but checksum mismatch, and a
subsequent entry present, then a corruption

= however, if a subsequent entry is NOT present, then cannot
determine whether corruption or crash

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reservi

Cannot Disentangle Last Entry Sometimes

last entry checksum 7
mismatch, when commit /
.

record is present, could

be either '

Corru ption persisted safely
later corrupted

CIITT

Fundamental limitation, not specific to CTRL

If cannot disentangle, safely mark as corrupted
= leave to distributed recovery to handle

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights R

write(entry)
’ write(commit recj |

Crash ~~~~° *""?\

CTRL Distributed Recovery

Distributed
Recovery

Distributed
Storage Layer
- Log Recovery

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All R

Properties of Practical Consensus Protocols

Leader-based

single node acts as leader; all updates flow through the leader

Epochs
a slice of time; only one leader per slice/epoch

a log entry is uniquely qualified by its index and epoch

Leader completeness

leader guaranteed to have all committed data
Applies to Raft, ZAB, and most implementations of Paxos

CTRL exploits these properties to perform recovery

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Rese

Follower Log Recovery

Decouple follower and leader recovery

Fixing followers is simple: can be fixed by leader because the

leader is guaranteed to have all committed data!

Leader

AB C|

Al IC

AIBY

BY /
A%C

=)

index = 2
epoch = e

S D @ 2018 Storage Developer Conference

AB|C

BU

Al C

niversity of Wiscons

AIBHE
Al Cl/

in - Madison. All Rights

A|B|C
AIBY
Al C

Leader Log Recovery

Fixing the leader is the tricky part
First, a simple case: some follower has the entry intact

leder |[AIBEZY, 2t A B AlB C
ABL AB| AlBL
AUCl-; = [AFIC)/) =» [AF]IC
B BT _
AlZIC) Aflc ALc

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights

Leader Log Recovery: Determining Commitment

However, sometimes cannot easily recover the leader’s log

Leader [\ B\ Leader
AB| /!
AB|
AlB ;'::"
AB|l -

Main insight: separate committed from uncommitted entries

= must fix committed, while uncommitted can be safely discarded
= discard uncommitted as early as possible for improved availability

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Re

Leader Log Recovery: Determining Commitment

Leader queries for a faulty entry

= if majority say they don’t have the entry = must be an uncommitted
entry — can discard and continue

= if committed then at least one node in the majority would have the
entry —can fix using that response

- J[AIBEZD * «[AIBE: -, fIAIBP]\ ©@before@®- iix
A AIB] ABIC)”: | [OA[BIC) @beiore®- discar
“‘Er‘\ AlB ’/,I":: AlB ”:",:: «E::‘ s IAIB i both
3 “\\ AlB ,':,"' AlB '::" -§‘\ v [A|B orcd)ers
\ AB| / A BE“/ \ [A]B safe!

fix using a response (will get
at least one correct response
because it is committed)

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights R

either fix log or discard,
depending on order

discard faulty,
continue

Evaluation

We apply CTRL in two systems
LogCabin
based on Raft

ZooKeeper
based on ZAB

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights R

Reliability Experiments Example

file-system data blocks

corruptions Al D
errors '\% Al)

log A[BICIV]

Original
= corruptions: 30% unsafe or unavailable
= errors: 50% unavailable

CTRL

= corruptions and errors: always safe and available

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights

Reliability Experiments Summary

Al ID
) - ’W
1 o

N

BC all possible EBC BC
WC combinations : A%C A%C
AU thobroutghness):

| (A

Targeted entries Lagging and crashed

1
1
1
1
1
1
1
1
1
1
1
1
1
FS data blocks ;

7 (4]
” A Bt 4—3 A
O .E. g% ‘7 -8 »y |Un-openable files
O < ¥ — |
C 2 PS5 Missing files
a O |
= / > L “mpropersizes
S ’ 7 w
(V)

BO7 (g -

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reservec

Reliability Results Summary

Original systems

unsafe or unavailable in many cases

CTRL versions

safe always and highly available

correctly unavailable in some cases (when all copies are faulty)

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Righ

Update Performance (SSD)

Workload:insert entries (1K) repeatedly, background snapshots (ZooKeeper)

2 20000 mOriginal = CTRL 4%
o
_g o 10000 §
o m IN
2 4 8 16|32

Clients

Overheads (because CTRL’s storage layer writes additional information
for each log entry) — however, little: SSDs 4% worst case, disks: 8% to 0%

Note: all writes, so worst-case overheads

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Res

Part-2 Summary

Recovering from storage faults correctly in a distributed
system is surprisingly tricky

Most existing recovery approaches are protocol-oblivious —
they cause unsafety and low availability

To correctly and quickly recover, an approach needs to be
protocol-aware

CTRL: a protocol-aware recovery approach for RSM

guarantees safety and provides high availability, with little
performance overhead

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Rese

Summary

Part-|: measure how distributed storage systems react to
storage faults such as corruption and errors

Main result: redundancy does not imply fault tolerance, some
fundamental root causes

Part-2: build a new recovery protocol for RSM, CTRL, safe and
available, little overheads

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Re

Conclusions

Obvious things we take for granted in distributed systems:
redundant copies will help recover bad data or
redundancy 2> reliability are surprisingly hard to achieve

Protocol-awareness is key to use redundancy correctly to
recover bad data

need to be aware of what’s going on underneath in the system

However, only a first step: we have applied PAR only to RSM

other classes of systems (e.g., quorum-based systems) remain vulnerable

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Rese

Research to Practice

Cords: Storage Corruption and Errors Tool

errfs —a fuse FS, a similar FS now part of Jepsen
similar methods applied by a few companies now (e.g., CockroachDB)

Available @ http://research.cs.wisc.edu/adsl/Software/

Related papers @ http://research.cs.wisc.edu/adsl/Publications/

Joint work with Aishwarya Ganesan, Andrea Arpaci-Dusseau, and
Remzi Arpaci-Dusseau
Thank you!

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Rese

http://research.cs.wisc.edu/adsl/Software/
http://research.cs.wisc.edu/adsl/Publications/

Backup Slides

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All R

Crashing - Common Local Reaction

Many systems that reliably detect fault simply crash on encountering faults
Block Corruption during Read Workloads

MongoDB ZooKeeper
XiX] collections.header : epoch I
X:X| collections.metadata epoch tmp
)(i)(coIIections data

Crashlng leads to reduced redundancy and imminent unavailability
Persistent fault -- Requires manual intervention
Redundancy underutilized!

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Reserved.
56

Current Approaches to Handling Storage Faults

Methodology

fault-injection study of practical systems (ZooKeeper, LogCabin,
etcd, a Paxos-based system)

analyze approaches from prior research

Protocol-oblivious

do not use any protocol knowledge

Protocol-aware

use some protocol knowledge but incorrectly or ineffectively

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Res

Protocol-Oblivious: Crash

Crash M\

use checksums and catch I/O errors BIC

corrupted

>

crash the node upon detection

A|BIC ,
popular in practical systems - o failed
safe but poor availability -

Restarting the node does not help
= persistent fault, so remain in crash-restart loop

= need error-prone manual intervention (can lead to safety
violations)

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights Rese

Protocol-Oblivious: Truncate

detect using

Truncate checksums

truncate “faulty” portions upon detection Al IC] == [A
However, can lead to safety violations
7ABc§Bc; . - XTIz
:[AIBIC] < [A[BIC| : < [A[B]C] ; - - XIY[Z
gABCE‘ABCE»ABC# »XYZ
: ’ ’ XlY|Z
o i : : X Y Z - (XIY|Z
S2 - Leader | Entry A truncates iS2,S3 crash; S|, 4, S2,S3 follow
AB,C corrupted faulty and all :55 form a majority leader’s log,
committed at S| . subsequent ! S| - Leader

iOIS Storage Developer Conference oy H P‘ W|scon$|n Madison. All Rights Rese
S D @ . | ShtFTES ' A,B,C silently

Recovery Approaches Summary

Availa- Perform- No No extra Fast Low
Class Approach Safety bility ance intervention] nodes recovery | complexity

9

NoDetection |

Protocol-
.. Crash [
oblivious 1

Truncate I Q

DeleteRebuild | I

MarkNonVote | 1€3

Protocol- Reconfiglire [2] | !
aware

0[eA00000

: QOO0 3

R IXTRIX TR I

Byzantine FT
CTRL

& XIXIX IR T X
& XIXIRICTR I IS

[1] Chandra et al., PODC *07 [2] Bolosky et al., NSDI ‘1 |

S D @ 2018 Storage Developer Conference. © University of Wisconsin - Madison. All Rights R

	Protocol-Aware Recovery for �Consensus-based Storage
	Failures in Distributed Storage Systems
	How About Faulty Data?
	Slide Number 4
	This talk…A “Measure-Then-Build” Approach
	Part-1: Measure
	Why does Redundancy Not Imply Fault Tolerance?
	Part-2: Build
	Outline
	Fault Model	
	Fault Model: ext4 and btrfs	
	Fault Injection Methodology - Errfs	
	Behavior Inference Methodology
	System Behavior Analysis
	An Example: Redis
	Redis: Analysis
	Other Systems
	Redundancy Does not Provide Fault Tolerance
	Why does Redundancy Not Imply Fault Tolerance?
	Why does Redundancy Not Imply Fault Tolerance?
	Crash and Corruption Handling are Entangled
	Unsafe Interaction between Local & Global Protocols
	Why does Redundancy Not Imply Fault Tolerance?
	Part-1 Summary
	Outline
	How to Recover Faulty Data?
	Unfortunately, No…Not So Easy!
	Problem: Approach is Protocol-Oblivious
	Our Proposal: Protocol-Aware Recovery (PAR)
	Focus: PAR for Replicated State Machines (RSM)
	RSM Overview
	Slide Number 32
	Slide Number 33
	CTRL Overview
	CTRL Guarantees
	CTRL Local Storage
	Slide Number 37
	Slide Number 38
	Slide Number 39
	CTRL Distributed Recovery
	Properties of Practical Consensus Protocols
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Evaluation
	Reliability Experiments Example
	Reliability Experiments Summary
	Reliability Results Summary
	Update Performance (SSD)
	�Part-2 Summary�
	Summary
	�Conclusions�
	Research to Practice
	Backup Slides
	Crashing - Common Local Reaction
	Current Approaches to Handling Storage Faults
	Protocol-Oblivious: Crash
	Protocol-Oblivious: Truncate
	Slide Number 60

