September 24-27, 2018
Santa Clara, CA

www.storagedeveloper.org

Quadlron: an Open Source Library for Number
Theoretic Transform-Based Erasure Codes

Vianney Rancurel
Giorgio Regni
Scality

Summary

7 Introduction

3 Properties of Codes

7 Type of Codes

3 Application
Decentralized Storage

7 Using the Library

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Reserved.

Introduction

What is Quadlron ?

[An open-source high performance erasure code
library

Why ?
J Because we needed a large number of parities
for world scale fault-tolerance
&« Why Open-source ?

J To benefit from a lot of pair of eyes
J Preparing to publish a paper

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Reserved.

Properties of Erasure Codes: Definition

A C(n,k) erasure code is defined by n=k+m
[k being the number of data fragments.
[m being the number of desired erasure fragments.

Example: C(9, 6)

Split D D D Encoding +5HENE“B Original data —'Split D D D Encouing’ 8 8 8
Original data %DDD—’ DD D ’ DDD
OO0 OO0
] O
Decoding D D D Decoding <:> <:> <:>
O O o O

Systematic

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Reserved.

Non-Systematic

Properties of Erasure Codes

0 Optimality: e.g. MDS (Maximum Distance Separable) erasure code guarantees that any k
fragments can be used to decode a file

[Systematicity: Systematic codes generate n-k erasure fragments and therefore maintain k data
fragments. Non-systematic codes generate n erasure fragments

[Speed: Erasure codes are characterized by their encode/decode speed. Speed may vary acc/to
the rate (k and m parameters). Speeds may also be more or less predictive acc/to codes.

[Rate sensitivity: Erasure codes can also be compared by their sensitivity to the rate r=k/n, which
may or may not impact the encoding and decoding speed

d

Rate adaptivity: Changing k and m without having to generate all the erasure codes

d

Confidentiality: determined if an attacker can partially decode the data if he obtains less than k
fragments. Non-systematic codes are confidential (different from threshold schemes)

[Repair Bandwidth: the number of fragments required to repair a fragment.

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Reserved.

(Main) Types of Erasure Codes

[Traditional RS Codes (e.g. Vandermonde or Cauchy matrices)
J LDPC Codes
[Locally-Repairable-Codes (LRC)
J FFT Based RS Codes
Multiplicative FFTs (prime fields)
Additive FFTs (binary extension fields)

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Reserved.

Types

SDC

of Codes: Traditional RS Codes

A message m = (mg,...,mg) € IF‘E can be represented
as a polynomial p,,(z) of degree k — 1:

Pm(Z) = mo + miz +moz® + -+ mp_1z"t (1)

The code word ¢ = (cp,...;¢n—1) € F}; of the message
m is obtained by evaluating p,(x) at a given but arbitrary
set of n different points S = {sy,..., 8,1} of the field F,
called the set of evaluation points. Concretely,

2 k—1
Co = Mg + M18g + M8y + +++ + Mg—18;

2 k—1
my + mM181 +Mg8] + -+« +Mg_18]

1

@)

_ 2 k—1
Cn—1 = Mg + M18p—1 T M8, 1+ +ME_18, 7

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved.

Types of Codes: Traditional RS Codes

SDC

Equation (2) can be represented as a multiplication of the
message m and matrix G:

c=mxG@G (3)
where G is the generator matrix of the RS codes:
1 I ... 17
Sg S% 33_1
G‘ — Sn Sl . e Sﬂ.—] {4)
k-1 k-1 k—1
5o 81 Sn—1.

Since s; # 8; when i # j, G is actually a Vandermonde
matrix [8].

2018 Storage Developer Conference. © Scality Inc. All Rights Reservec

Types of Codes: Traditional RS Codes

The good:
J Simple
J Support systematic and adaptive rates.

The bad:
[Matrix multiplication: O(k x n)

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Reserved.

H is a matrix for a C(8,4)
code

w, is the number of 1 in a col
w, is the number of 1sin a
row

To be called low density w,
<<nandw, <<m

Regular if w, constant and w,
= wW,.(n/m)

Matrix can be generated
pseudo-randomly

Presence of short cycles f1,
f2 bad

L o o U oo o

Source: Bernhard M.J. Leiner

Types of Codes: LDPC Codes

Low-Density-Parity-Check (LDPC) codes are also an important class of erasure codes and are
constructed over sparse parity-check matrices.

The good:
[Theoretically an LDPC code optimal for all the interesting properties for a given use case exist.

The bad:
[LDPC are not MDS: it is always possible to find a pattern that cannot decode (e.g. having only k
fragments out of n). Overhead is k*f or k+f with a small f, but the overhead is not deterministic.
@ You can always find/design an LDPC code optimized for few properties (i.e. tailored for a
specific use case) but it will be sub-optimal for the other properties
[Designing a good LDPC code is some kind of black art that requires a lot of fine tuning and
experimentation.

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Reserved.

Types of Codes: LRC Codes

5 file blocks

SDC

) l:l
5 file blocks 4 RS parity blocks
X7| [Xa| | Xa| X1 | I P3| P4
\‘31 |Cz J' CJ- ’ [l
-51 v ,f l:l
. local parity block E S3 ?‘ implied parity block
#l‘
“s

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved

P1, P2, P3 and P4 are
constructed over a standard
RS

S1+S2+S3=0

No need to store S3

Source: XORing Elephants: Novel Erasure Codes
for Big Data

Types of Codes: LRC Codes

Locally-Repairable-Codes (LRC) have tackled the repair bandwidth issue of the
RS codes. They combine multiple layers of RS: the local codes and the global

codes.

The good:
[J Better repair bandwidth than RS codes. Because with RS code we need to

read k fragments to decode.
The bad:

[Those codes are not MDS and they require an higher storage overhead
than MDS codes.

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Reserved.

Types of Codes: Multiplicative FF

SDC

The set S is constructed as a multiplicative group whose
generator is the N root of unity of the field F,, i.e.

S = {afﬂ,...,arN_l} (11)

where a is the N root of unity of the field F,,. We call this
technique multiplicative FFT.

The FFT technique applied for the constructed set S was
first introduced in [9]. Supposing that N = N; x N, the
FFT operation on m is split into two FFT operations on two
vectors m; and my of length NV; and N, respectively. This
results in a computational complexity O(N (N7 + N3)). If N
is highly composite, this technique reduces the computation
time to O(N log N).

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved.

Types of Codes: Multiplicative FF

SDC

To obtain such advantages, however, this technique re-
quires the satisfaction of two conditions:

1) N is a divisor of ¢ — 1 (for the existing N*' root of
unity of the field),
2) N is highly composite, e.g. N = 2% ideally

A simple solution to satisfying these conditions is to
use the field F,—,+~ where p is prime and p — 1 is highly
composite. Fermat numbers, ie. F; = 22" + 1 for i < 4,
are perfectly suitable for that. This technique, also called
Fermat Number Transform (FNT) based erasure codes, was
introduced and analyzed in [10], [11].

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved.

Types of Codes: Additive FF

SDC

This technique, however, does not efficiently apply to
the binary extension field Fy. because divisors of (2% — 1)
are not highly composite. However, Fou is perfectly suitable
for most practical applications because each element can be
expressed by n bits. The following FFT technique focuses on
this field.

The FFT length is necessarily a power of 2, i.e. N = 2™
with m < w. Let fy,..., Bm—1 be m linearly independent
elements of Fa~. The set S is chosen as a subspace spanned
by B; over Fy, i.e.

8; = 1B + 1181 + 2B+ + im_18m—1,

for0<i<2m -1 (12)

where i = ig+112+8922 + -+ - 4+, 1277 withi; € Fy.

The FFT operation on a vector m is re-expressed as two FFTs
on two vectors of half length.

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved.

Types of Codes: FFT Based RS Codes

Fast Fourier transform (FFT) have a good set of desirable properties.

The good:
J Relatively simple
[O(N.log(N)) (because we use FFT to speed up the matrix multiplication)
O MDS
J Fast for large n

The bad:
[J Repair bandwidth: If there is a missing erasure, we need k codes to
recover the data fragments. For systematic codes, in any case we need to
download k codes.

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Reserved.

Multiplicative FFT: Vectorization

a= (ﬂ'ljﬂ'ﬂa*“uﬂ'n)
= (51552:*“1&11) {13)
= (Clicﬂy*“icﬂ)

0] o

« Addition

c; = (a; +b;)%q, fori=1,...,n
e Subtraction

c; = (a; — b;)%gq, fori=1,...,n
« Hadamard multiplication

c; = (a; xb;))%q, fori=1,...,n

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Reserv

Multiplicative FFT: Horizontal Vectorization

- Vertical Vectorization

Multiplicati FF

a4 | 821 | 831 | 849 | 354 8n byj | by | bay | bag | bBsy by, 1
Az | 822 | 83 | 842 | 852 82 bis | baz | bag | byn | B5a bz
813 | 823 | 83z | a3 | asa3 8n3 bya | bza | baz | baz | bsa bna
a4 | 824 | 834 | 244 | 354 an 4 big | bza | bag | bas | bss b4
a5 | 825 | Bas | a5 | ass dn 5 bys | bes | bas | Bas | bss bys
815 | Bpg | 835 | Bas | Bs5s 8y big | bee | bas | Pas | bse brs

DG

2018 Storage Developer Conference. © Scality Inc. All Rights Reserv

€11 | ©21 | €31 | Ca1 | Csa Cn,1
€12 | C22 | ©32 | Ca2 | Cs2 Cn2
Ci3 | C23 | Caz | Ca3 | Cs3 Cn3
Ci4 | €24 | €34 | C44 | C54 Cn4
€15 | C25 | G5 | Cas | Css Cn5
Cis | 25 | ©35 | Cas | Css Cn.s

Multiplicative FFT: Vertical Vectorization

1400

Encoding performance over GF{65537)

1300

1200

1100

1000

900

Encoding speed (MB,/s)

g

700

=l =755 =0=—0= 1024 =—a=n=7048
600
8 16 32 04 128
MNumber of data fragments

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Resi

Multiplicative FFT: Vertical Vectorization

120
Decoding performance over GF{65537)

100
—a 55 —*—n=1024 -—n=2048

Decoding speed (MB,/s)
2

o °
8 16 32 64 128
Mumber of data fragments

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Resi

Multiplicative FFT: Vertical Vectorization

Impact of packet size on performance

Encoding speed Mibfs
& % = b
& g8 B8

8

g

—— n=128 e = 10028

2
5

32 B4 12E 256 512 1024 2048 40E6 8132 16384
Packetsizes in logarithmic scale

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Resi

Speed Comparison

A Isa-l: Intel Intelligent Storage Acceleration Library. Matrix based RS HW accelerated:
http://01.org/intel-storage-acceleration-library-open-source-version

[Wirehair: Fast and Portable Fountain Codes in C. Hybrid LDPC.
https://github.com/catid/wirehair

1 Leopard: MDS Reed-Solomon Erasure Correction Codes for Large Data in C. Additive
FFT based. https://github.com/catid/leopard

Thanks Catid !

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Reserved

http://01.org/intel-storage-acceleration-library-open-source-version
https://github.com/catid/wirehair
https://github.com/catid/leopard

Types of Codes: Speed Comparison

2500

Encoding speed for rate = 1/4 —4—|5A-L
—a— WireHair
——FNT

Emoding speed Mib s

] 15 3z &4 128 256 512 1024
Mumber of data frageents [k}

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Resi

Types of Codes: Speed Comparison

3003
Decoding speed for rate = 1/4 ——T
==—\VireHair
—a—FNT
2500
2000
o
-]
=
g
& 1500
3
1003
500 |
] hl |
a 15 32 ad 1zE 256 512 1024

Number of data fragements [k}

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Resi

Types of Codes: Speed Comparison

3000
Encoding speed for rate = 1/3 ~—SA-L
—=a—WireHair
——FNT
2500
2000
&
z
-
o
& 1500
F
:
1000
500 \.\-‘
a] I
3 16 iz 64 128 256 512 1024

Murnber of data fragments (k)

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Resi

Types of Codes: Speed Comparison

3000

Decoding speed for rate = 1/3 =5
—=—\WireHalr
—a—FNT
2500
2000
-
=]
=
H
& 1500
g
1000
500 —i- __—-—l—-_________-_-_-‘
‘_-_-_""--...______'_,_..._._______-_____.___‘_ ot 4 .
8 15 32 &4 128 56 512 1024

Number of data fragments (k)

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Resi

Types of Codes: Speed Comparison

G000
Encoding speed for rate =1/2 b 1500
_ = WiraHair
5000
el F T
s Leopard

Encoding spiod Wil

E} 1B 3z B4 128 256 512 1024
Murmber of data fragments (k)

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Resi

Types of Codes: Speed Comparison

3000
Decoding speed for rate = 1/2

——I5A-L
\ =a—\WireHair

2500

S L oiadd

Dewmding speed Miks
m rd
g g

g

L] 1B 32 64 128 256 512 1024
Number of data fragrments (k)

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Resi

Types of Codes: Speed Comparison

4000
Encoding speed for rate = 2/3 b 15AL
3500 . =+=\\ireHair
: ~a—FNT
3000 4 s=Leapard
e
z
=
=
-3
F

8 16 iz [} 128 256 512 1024
Murnber of data fragments (k]

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Resi

Types of Codes: Speed Comparison

Deoding speed for rate = 2,3

=4=i5A-L
—=—'WireHair
wl=FNT

s—Laopard

Deading speed Mibfs

B 16 32 B4 128 256 512 1024
MNumber of data fragments (k)

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Resi

Application

[Decentralized Storage

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Reserved.

Application: Decentralized Storage

Requirements for an erasure code for a decentralized storage archive:

Simple (e.g. may compile on WASM)

Fast, e.g. for > 24 fragments

MDS: A rock solid contract

Work with all rates, and all combinations of n and k

Systematic for smaller fragments

Non-systematic for larger fragments -> Confidentiality ensured if fragments
not stored on same servers (not a threshold scheme though, must be
combined with encryption)

Repair-Bandwidth not critical

Aaaaad

d

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Reserved.

Application: Decentralized Storage

SDC

= e o o =
(X 5 o o (=
:

Probability to retrieve every data fragments

e
o

Evolution of the reachability of the whole set of data fragments

MNodes' reliability
—— High
Medium
— Low
-\-\-\--\"\-_
-_\"“-—_________\-_-
~
"\-\.R..
S~
20 40 1] 80 100

Mumber of data fragments (k)

2018 Storage Developer Conference. © Scality Inc. All Rights Res

Applications: Use Case

Across Clouds

Metadata Mative Cloud
Driven & Search Data Format

Policy-Based ==
u Data Management %

Unified Interface %

REPLICATION STATUS

TOTAL DATA MANAGED

6GB

CAPACITY OBJECTS

S D ' 18 2018 Storage Developer Conference. © Scality Inc. All Rights Reserved.

REPLICATION THROUGHPUT

133.51MB/s

DATA MANAGED

MEMORY

Decentralized Storage: Zenko

bucket & object
namespace
A
Zenkov Clouds
MongoDB ‘SPYOXVd“" 1> $3C/RING
Client - Transient o el
NES Zenko Source V
NFS by s [w AWS
o
cL | » CloudServer /:/T'/
— SN N
Orbit (47 | v 4 \
Backbeat
ﬁ T Azure
Kafka
A

.
S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Reserv

Application: Decentralized Storage

@ Multiple locations, multiple servers per location
Each server is a “Quadiron Provider”
E.g. 10 locations on the globe with 5
servers/location: C(50,35) => can lose 3
locations or 15 servers for an overhead of 1.4
A server is just a bunch of disks, e.g. 45 drives
Can have local parities on servers to avoid
repairing too often on the network e.g. C(45, 40)

Contract ‘ Contract H Contract ‘ ‘ Contract
7 =1.125
Total overhead 1.4 * 1.125 =1.57
Zenko ot =" Provider E.g. w/ 10TB drives, 22PB => 14PB useful
H”‘“::lf;j:«-%-_%__‘ Guadiron [Use blockchain transactions to store the location of
T~ | Provider blocks
T~ E.g. using Parity, proof-of-work (non-trusted
T Quadivon env) or proof-of-authority (trusted env =>
millions tx/s)

Index the ledges by block-ids
Use the indexes to locate the blocks
Consolidate indexes

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Reserved.

Using the Library

C++ Library is available at: https://github.com/scality/quadiron
LICENSE: BSD 3-clause

Compiling:

$ mkdir build

$ cd build

$ cmake -G "Unix Makefiles"
$ make

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Reserved

https://github.com/scality/quadiron

Using the Library: Code

// #include <quadiron.h>

const int word_size = 8;
const int n_data = 16;
const int n_parities = 64;
const size_ t pkt_size = 1024;

quadiron: :fec: :RsFnt<T>* fec = new quadiron::fec: :RsFnt<uint64_t>(
quadiron::fec::FecType: :NON_SYSTEMATIC, word_size, n_data, n_parities, pkt_size

)

// encode

std: :vector<std::istream*> d_files(fec->n_data, nullptr);
std: :vector<std: :ostream*> c_files(fec->n_outputs, nullptr);

std: :vector<quadiron: :Properties> c_props(fec->n_outputs);
fec->encode_packet(d_files, c_Ffiles, c _props);

// decode

std: :vector<std::ostream*> r_files(fec->n_data, nullptr);
fec->decode_bufs(d_files, c_Ffiles, c props, r_files);

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Reserved.

Using the Library: Next Steps

[Optimize Multiplicative FFT decoding: For now a relatively slow
Lagrange interpolation
We know how to do it for special values of k and m (k mod m =0,
m mod k = 0)
Optimize Additive FFTs
Implement Systematic Additives FFTs

Implement NTT adaptive codes for both multiplicative and additive
FFTs

Other optimizations
Frobenius FFTs for both multiplicative and additive FFTs

a 4aaad

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Reserved.

Developers

Lam Pham-Sy: Lam Pham-Sy is a research engineer working on information theory and computer science. His main
research focuses on different families of forward erasure correcting codes such as ReedSolomon codes, Low-Density
Parity-Check codes, Locally Repairable codes etc. Their application covers from digital communication to data storage.
He did his PhD program in a collaboration between CEA-Leti and Eutelsat S.A. on the subject of forward erasure codes
for satellite communications. Afterwards, he continued his researches at ETIS laboratory and at Orange Labs. Currently
he works at Scality S.A. as a research engineer whose research topics include application of erasure codes in
distributed storage systems, finite field arithmetics.

Sylvain Laperche: Sylvain Laperche is a code craftsman. With a background in biotech engineering,he learnt how to
hack bacteria before learning how to hack a computer. That changed when it studied bioinformatics, and since then he
honed and applied its skill on a wide set of problematics: genome sequencing, complex embedded systems, climate
modelling at European scale, mass-scale geolocation for telco industries. Its steps led him to work on distributed
storage systems and he currently works as an R&D engineer at Scality. Sylvain Laperche has an Engineer’s degree in
Hardware, Circuit Design and Embedded Systems from ISIMA.

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Reserved.

Zenko/Quadlron Community

1,000+ registered Zenko Orbit users

Forum https://forum.zenko.io
Website: www.zenko.io/blog
Quadlron github: https://github.com/scality/quadiron

fNEWS \ https://www.zenko.io/blog/free-library-erasure-codes/

Q.
A

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Rese

https://forum.zenko.io
http://www.zenko.io/blog
https://github.com/scality/quadiron
https://www.zenko.io/blog/free-library-erasure-codes/

Questions ?

S D ‘ 18 2018 Storage Developer Conference. © Scality Inc. All Rights Resi

	QuadIron: an Open Source Library for Number Theoretic Transform-Based Erasure Codes
	Summary
	Introduction
	Properties of Erasure Codes: Definition
	Properties of Erasure Codes
	(Main) Types of Erasure Codes
	Types of Codes: Traditional RS Codes
	Types of Codes: Traditional RS Codes
	Types of Codes: Traditional RS Codes
	Types of Codes: LDPC Codes
	Types of Codes: LDPC Codes
	Types of Codes: LRC Codes
	Types of Codes: LRC Codes
	Types of Codes: Multiplicative FFT
	Types of Codes: Multiplicative FFT
	Types of Codes: Additive FFT
	Types of Codes: FFT Based RS Codes
	Multiplicative FFT: Vectorization
	Multiplicative FFT: Horizontal Vectorization
	Multiplicative FFT: Vertical Vectorization
	Multiplicative FFT: Vertical Vectorization
	Multiplicative FFT: Vertical Vectorization
	Multiplicative FFT: Vertical Vectorization
	Speed Comparison
	Types of Codes: Speed Comparison
	Types of Codes: Speed Comparison
	Types of Codes: Speed Comparison
	Types of Codes: Speed Comparison
	Types of Codes: Speed Comparison
	Types of Codes: Speed Comparison
	Types of Codes: Speed Comparison
	Types of Codes: Speed Comparison
	Application
	Application: Decentralized Storage
	Application: Decentralized Storage
	Applications: Use Case
	Decentralized Storage: Zenko
	Application: Decentralized Storage
	Using the Library
	Using the Library: Code
	Using the Library: Next Steps
	Developers
	Zenko/QuadIron Community
	Questions ?

