
2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 1

QuadIron: an Open Source Library for Number
Theoretic Transform-Based Erasure Codes

Vianney Rancurel
Giorgio Regni

Scality

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 2

Summary

❒ Introduction
❒ Properties of Codes
❒ Type of Codes
❒ Application

❒Decentralized Storage
❒ Using the Library

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 3

Introduction
What is QuadIron ?
❒ An open-source high performance erasure code

library
Why ?
❒ Because we needed a large number of parities

for world scale fault-tolerance
Why Open-source ?
❒ To benefit from a lot of pair of eyes
❒ Preparing to publish a paper

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 4

Properties of Erasure Codes: Definition
A C(n,k) erasure code is defined by n=k+m
❒ k being the number of data fragments.
❒ m being the number of desired erasure fragments.

Example: C(9, 6)

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 5

Properties of Erasure Codes

❒ Optimality: e.g. MDS (Maximum Distance Separable) erasure code guarantees that any k
fragments can be used to decode a file

❒ Systematicity: Systematic codes generate n-k erasure fragments and therefore maintain k data
fragments. Non-systematic codes generate n erasure fragments

❒ Speed: Erasure codes are characterized by their encode/decode speed. Speed may vary acc/to
the rate (k and m parameters). Speeds may also be more or less predictive acc/to codes.

❒ Rate sensitivity: Erasure codes can also be compared by their sensitivity to the rate r=k/n, which
may or may not impact the encoding and decoding speed

❒ Rate adaptivity: Changing k and m without having to generate all the erasure codes
❒ Confidentiality: determined if an attacker can partially decode the data if he obtains less than k

fragments. Non-systematic codes are confidential (different from threshold schemes)
❒ Repair Bandwidth: the number of fragments required to repair a fragment.

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 6

(Main) Types of Erasure Codes

❒ Traditional RS Codes (e.g. Vandermonde or Cauchy matrices)
❒ LDPC Codes
❒ Locally-Repairable-Codes (LRC)
❒ FFT Based RS Codes

❒ Multiplicative FFTs (prime fields)
❒ Additive FFTs (binary extension fields)

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 7

Types of Codes: Traditional RS Codes

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 8

Types of Codes: Traditional RS Codes

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 9

Types of Codes: Traditional RS Codes

The good:
❒ Simple
❒ Support systematic and adaptive rates.

The bad:
❒ Matrix multiplication: O(k x n)

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 10

Types of Codes: LDPC Codes
❏ H is a matrix for a C(8,4)

code
❏ wc is the number of 1 in a col
❏ wr is the number of 1s in a

row
❏ To be called low density wc

<< n and wr << m
❏ Regular if wc constant and wr

= wc.(n/m)
❏ Matrix can be generated

pseudo-randomly
❏ Presence of short cycles f1,

f2 bad

Source: Bernhard M.J. Leiner

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 11

Types of Codes: LDPC Codes

Low-Density-Parity-Check (LDPC) codes are also an important class of erasure codes and are
constructed over sparse parity-check matrices.

The good:
❒ Theoretically an LDPC code optimal for all the interesting properties for a given use case exist.

The bad:
❒ LDPC are not MDS: it is always possible to find a pattern that cannot decode (e.g. having only k

fragments out of n). Overhead is k*f or k+f with a small f, but the overhead is not deterministic.
❒ You can always find/design an LDPC code optimized for few properties (i.e. tailored for a

specific use case) but it will be sub-optimal for the other properties
❒ Designing a good LDPC code is some kind of black art that requires a lot of fine tuning and

experimentation.

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 12

Types of Codes: LRC Codes

❏ P1, P2, P3 and P4 are
constructed over a standard
RS

❏ S1 + S2 + S3 = 0
❏ No need to store S3

Source: XORing Elephants: Novel Erasure Codes
for Big Data

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 13

Types of Codes: LRC Codes

Locally-Repairable-Codes (LRC) have tackled the repair bandwidth issue of the
RS codes. They combine multiple layers of RS: the local codes and the global
codes.

The good:
❒ Better repair bandwidth than RS codes. Because with RS code we need to

read k fragments to decode.

The bad:
❒ Those codes are not MDS and they require an higher storage overhead

than MDS codes.

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 14

Types of Codes: Multiplicative FFT

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 15

Types of Codes: Multiplicative FFT

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 16

Types of Codes: Additive FFT

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 17

Types of Codes: FFT Based RS Codes

Fast Fourier transform (FFT) have a good set of desirable properties.

The good:
❒ Relatively simple
❒ O(N.log(N)) (because we use FFT to speed up the matrix multiplication)
❒ MDS
❒ Fast for large n

The bad:
❒ Repair bandwidth: If there is a missing erasure, we need k codes to

recover the data fragments. For systematic codes, in any case we need to
download k codes.

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 18

Multiplicative FFT: Vectorization

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 19

Multiplicative FFT: Horizontal Vectorization

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 20

Multiplicative FFT: Vertical Vectorization

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 21

Multiplicative FFT: Vertical Vectorization

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 22

Multiplicative FFT: Vertical Vectorization

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 23

Multiplicative FFT: Vertical Vectorization

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 24

Speed Comparison

❏ Isa-l: Intel Intelligent Storage Acceleration Library. Matrix based RS HW accelerated:
http://01.org/intel-storage-acceleration-library-open-source-version

❏ Wirehair: Fast and Portable Fountain Codes in C. Hybrid LDPC.
https://github.com/catid/wirehair

❏ Leopard: MDS Reed-Solomon Erasure Correction Codes for Large Data in C. Additive
FFT based. https://github.com/catid/leopard

Thanks Catid !

http://01.org/intel-storage-acceleration-library-open-source-version
https://github.com/catid/wirehair
https://github.com/catid/leopard

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 25

Types of Codes: Speed Comparison

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 26

Types of Codes: Speed Comparison

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 27

Types of Codes: Speed Comparison

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 28

Types of Codes: Speed Comparison

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 29

Types of Codes: Speed Comparison

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 30

Types of Codes: Speed Comparison

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 31

Types of Codes: Speed Comparison

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 32

Types of Codes: Speed Comparison

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 33

Application

❒ Decentralized Storage

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 34

Application: Decentralized Storage

Requirements for an erasure code for a decentralized storage archive:
❒ Simple (e.g. may compile on WASM)
❒ Fast, e.g. for > 24 fragments
❒ MDS: A rock solid contract
❒ Work with all rates, and all combinations of n and k
❒ Systematic for smaller fragments
❒ Non-systematic for larger fragments -> Confidentiality ensured if fragments

not stored on same servers (not a threshold scheme though, must be
combined with encryption)

❒ Repair-Bandwidth not critical

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 35

Application: Decentralized Storage

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 36

Applications: Use Case

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 37

Decentralized Storage: Zenko

QuadIron

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 38

Application: Decentralized Storage
❒ Multiple locations, multiple servers per location

❒ Each server is a “Quadiron Provider”
❒ E.g. 10 locations on the globe with 5

servers/location: C(50,35) => can lose 3
locations or 15 servers for an overhead of 1.4

❒ A server is just a bunch of disks, e.g. 45 drives
❒ Can have local parities on servers to avoid

repairing too often on the network e.g. C(45, 40)
= 1.125

❒ Total overhead 1.4 * 1.125 = 1.57
❒ E.g. w/ 10TB drives, 22PB => 14PB useful

❒ Use blockchain transactions to store the location of
blocks
❒ E.g. using Parity, proof-of-work (non-trusted

env) or proof-of-authority (trusted env =>
millions tx/s)

❒ Index the ledges by block-ids
❒ Use the indexes to locate the blocks
❒ Consolidate indexes

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 39

Using the Library

C++ Library is available at: https://github.com/scality/quadiron
LICENSE: BSD 3-clause

Compiling:

$ mkdir build
$ cd build
$ cmake -G 'Unix Makefiles' ..
$ make

https://github.com/scality/quadiron

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 40

Using the Library: Code
// #include <quadiron.h>

const int word_size = 8;
const int n_data = 16;
const int n_parities = 64;
const size_t pkt_size = 1024;

quadiron::fec::RsFnt<T>* fec = new quadiron::fec::RsFnt<uint64_t>(
quadiron::fec::FecType::NON_SYSTEMATIC, word_size, n_data, n_parities, pkt_size

);

// encode
std::vector<std::istream*> d_files(fec->n_data, nullptr);
std::vector<std::ostream*> c_files(fec->n_outputs, nullptr);
std::vector<quadiron::Properties> c_props(fec->n_outputs);
fec->encode_packet(d_files, c_files, c_props);

// decode
std::vector<std::ostream*> r_files(fec->n_data, nullptr);
fec->decode_bufs(d_files, c_files, c_props, r_files);

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 41

Using the Library: Next Steps
❒ Optimize Multiplicative FFT decoding: For now a relatively slow

Lagrange interpolation
❒ We know how to do it for special values of k and m (k mod m = 0,

m mod k = 0)
❒ Optimize Additive FFTs
❒ Implement Systematic Additives FFTs
❒ Implement NTT adaptive codes for both multiplicative and additive

FFTs
❒ Other optimizations

❒ Frobenius FFTs for both multiplicative and additive FFTs

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 42

Developers

Lam Pham-Sy: Lam Pham-Sy is a research engineer working on information theory and computer science. His main
research focuses on different families of forward erasure correcting codes such as ReedSolomon codes, Low-Density
Parity-Check codes, Locally Repairable codes etc. Their application covers from digital communication to data storage.
He did his PhD program in a collaboration between CEA-Leti and Eutelsat S.A. on the subject of forward erasure codes
for satellite communications. Afterwards, he continued his researches at ETIS laboratory and at Orange Labs. Currently
he works at Scality S.A. as a research engineer whose research topics include application of erasure codes in
distributed storage systems, finite field arithmetics.

Sylvain Laperche: Sylvain Laperche is a code craftsman. With a background in biotech engineering,he learnt how to
hack bacteria before learning how to hack a computer. That changed when it studied bioinformatics, and since then he
honed and applied its skill on a wide set of problematics: genome sequencing, complex embedded systems, climate
modelling at European scale, mass-scale geolocation for telco industries. Its steps led him to work on distributed
storage systems and he currently works as an R&D engineer at Scality. Sylvain Laperche has an Engineer’s degree in
Hardware, Circuit Design and Embedded Systems from ISIMA.

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 43

Zenko/QuadIron Community

1,000+ registered Zenko Orbit users

Forum https://forum.zenko.io
Website: www.zenko.io/blog
QuadIron github: https://github.com/scality/quadiron

https://www.zenko.io/blog/free-library-erasure-codes/

https://forum.zenko.io
http://www.zenko.io/blog
https://github.com/scality/quadiron
https://www.zenko.io/blog/free-library-erasure-codes/

2018 Storage Developer Conference. © Scality Inc. All Rights Reserved. 44

Questions ?

	QuadIron: an Open Source Library for Number Theoretic Transform-Based Erasure Codes
	Summary
	Introduction
	Properties of Erasure Codes: Definition
	Properties of Erasure Codes
	(Main) Types of Erasure Codes
	Types of Codes: Traditional RS Codes
	Types of Codes: Traditional RS Codes
	Types of Codes: Traditional RS Codes
	Types of Codes: LDPC Codes
	Types of Codes: LDPC Codes
	Types of Codes: LRC Codes
	Types of Codes: LRC Codes
	Types of Codes: Multiplicative FFT
	Types of Codes: Multiplicative FFT
	Types of Codes: Additive FFT
	Types of Codes: FFT Based RS Codes
	Multiplicative FFT: Vectorization
	Multiplicative FFT: Horizontal Vectorization
	Multiplicative FFT: Vertical Vectorization
	Multiplicative FFT: Vertical Vectorization
	Multiplicative FFT: Vertical Vectorization
	Multiplicative FFT: Vertical Vectorization
	Speed Comparison
	Types of Codes: Speed Comparison
	Types of Codes: Speed Comparison
	Types of Codes: Speed Comparison
	Types of Codes: Speed Comparison
	Types of Codes: Speed Comparison
	Types of Codes: Speed Comparison
	Types of Codes: Speed Comparison
	Types of Codes: Speed Comparison
	Application
	Application: Decentralized Storage
	Application: Decentralized Storage
	Applications: Use Case
	Decentralized Storage: Zenko
	Application: Decentralized Storage
	Using the Library
	Using the Library: Code
	Using the Library: Next Steps
	Developers
	Zenko/QuadIron Community
	Questions ?

