
2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 1

Accelerated Erasure Coding: The New
Frontier of Software Defined Storage

Dineshkumar Bhaskaran
Aricent – Altran Group

2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 2

Introduction to Data Resiliency

 Traditional RAID and Mirroring
 Multiple disks are used for data placement thereby improving

performance and resiliency
 High storage overhead; high rebuild times
 Difficult to recover from co-related disk failures

 Erasure coding
 Erasure coding is data protection method in which data is

encoded to data blocks and parity blocks. These are then stored
across locations or storage nodes
 Compute intensive

2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 3

Erasure Coding : A primer

 A traditional erasure code is represented
as (k, m) where it encodes k data blocks
with m parity blocks writes them to k+m
storage nodes

 An optimal (or MDS) code can recover
from any ‘m’ node failures

 A popular code is Reed-Solomon (RS).
It has been successfully used in several
solutions like Linux RAID-6, Google file
system II, Hadoop, Facebook, etc.

Erasure coding

D1 D2 D3 D4 C1 C2

D

A (4, 2) erasure code

2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 4

Erasure Coding : Read and Write
Traditional erasure code
• A (4, 2) erasure code has 4 data chunks and 2 parity chunks

D
at

a
B

lo
ck

 (f
ile

/o
bj

ec
t)

F1

F2

F3

F4

C1

C2

D1

D2

D3

D4

D1

D2

D3

D4

S2

S5

S4

S3

S6

S1 D
at

a
B

lo
ck

(f

ile
/o

bj
ec

t)

A
pp

lic
at

io
n

A
pp

lic
at

io
n

Write Create
chunks

encode Write
Disks

Read path
Write path

Read

F1

F2

F3

F4

Recon-
struct

Read

2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 5

Erasure Coding : Read and Write
Traditional erasure code
• A (4, 2) erasure code has 4 data chunks and 2 parity chunks

D
at

a
B

lo
ck

 (f
ile

/o
bj

ec
t)

F1

F2

F3

F4

C1

C2

D1

D2

D3

D4

D1

D2

D3

C1

S2

S5

S4

S3

S6

S1 D
at

a
B

lo
ck

(f

ile
/o

bj
ec

t)

A
pp

lic
at

io
n

A
pp

lic
at

io
n

Write Create
chunks

encode Write
Disks

Read path
Write path

Read

F1

F2

F3

F4

Recon-
struct

Read

Reconstruct path

New disks
D4 C2

2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 6

Erasure Coding : Shortcomings

 Encode is compute intensive
 In case of Reed Solomon a generator matrix of

dimension (k+m, k) is used to create code
chunks from data chunks

 Reconstruction is costly. It is triggered in case of
 Degraded Read : This issue is caused when

application receives read exception while
reading a data block in a node due to software
errors (hot spot effect or system updates) or
hardware errors

 Node repair : The whole node is down

Number of failed nodes in a Facebook
cluster of 3,000 nodes for a month [4]

2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 7

Erasure Coding : Modern approaches

 Locally recoverable code (LRC)
 LRCs trade storage efficiency for

speeding up the recovery
process

 LRCs use MDS code in a
hierarchical manner by
performing the encoding at
multiple levels

D1 D2 D3 D4

D5 D6 D7 D8

L1

G1 G2

Global
Parity

Local
Parity

Local
Parity

L2

G3 G4

2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 8

Erasure Coding : Modern approaches

 Regenerating codes
 These are mostly MDS codes represented as (n, k, d, α, β)

which divides the chunks into smaller sub-chunks during the
encoding process

 Reduce the bandwidth for the repair by reducing the amount of
data read from each node

 Further classified as minimum storage regenerating codes and
minimum bandwidth regenerating codes
 Highly compute intensive

2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 9

Erasure code @ Aricent – Altran Group

 Improvement in storage efficiency, Latency.
 Employ new generation Clay Code[2]. Clay Code has

 Least possible storage overhead
 Least possible repair bandwidth and disk read
 Shown 3x repair time reduction and up to 30% and 106% improvement in

degraded read and write with CEPH
 Acceleration of Erasure Coding

 Offloading the computation to GPU
 Accelerated Cauchy RS (CRS) from Jerasure library and Clay Code

 Integrate the accelerated erasure code algorithms to CEPH.

2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 10

Cauchy Reed-Solomon

 Cauchy Reed Solomon
 Uses Cauchy generator matrices
 Multiplication is reduced to XOR

operation
 Accelerated Cauchy Reed Solomon

 Use of constant memory of generator
matrix in GPU

 Use of shared memory to optimize
access to data in global memory

Cauchy RS erasure code[3]

Generator
matrix

Input data

mw

Data Chunk k-1

Data Chunk 0

Data Chunk 1

Packet 0
Packet 1

Packet w-1

Packet 0
Packet 1

Packet w-1

Packet 0
Packet 1

Packet w-1

Block 0 kw

Parity Chunk 0
Parity Chunk 1

Parity Chunk m-1

Block 1 Block N-1

2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 11

Clay Code : Construction

 Consider the (2, 2) encoding, each sub-chunk
is represented using a point in plane. Sub-
chunks are further classified as coupled (blue
dots) and uncoupled (red-dots)
 Using uncoupled pairs copied as is, a Pairwise

Reverse Transform (PRT) is used on paired sub-
chunks to obtain elements of uncoupled data
cube (cube on RHS). A MDS code is used to get
rest of uncoupled data cube

 Using newly constructed uncoupled data cube a
Pairwise Forward Transform (PFT) is applied to
obtain the code chunks. Both PRT and PFT are
(2, 2) MDS codes

PRT

+Copy

C1

C1*

C2

C2*

U1

U2

U1*

U2*

M
D

S

PFT

+Copy

C3

C3*

C4

C4*

U3*
U3

U4

U4*

y
x

z = (0,0)

z = (0,1)

z = (1,0)

z = (1,1)

A (2, 2) Clay Code

Uncoupled data cube

2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 12

Clay Code : Decode/Recovery Process

 Consider the following single data node erasure case
 Uncoupled data cube is created using PRT and copying the unpaired

sub-chunks
 MDS decode is performed on the planes selected for recovery and

uncoupled sub-chunks are copied

PRT+

Copy

MDS Copy
C

C*

U

U*

2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 13

Clay Code : Decode/Recovery Process

 With clay code construction any two sub-chunks in the set {U, U*, C,
C*} can be recovered from the remaining two sub-chunks using PFT.
Here C1* is computed from C1, U1 and C2* from C2, U2

 The repair bandwidth is reduced in this method since data from only
2(half) Z-planes are used for the recovery process

C2*

C2 U2

U1

C1*

C1

2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 14

Clay Code : Enhancements

 Use of accelerated Cauchy RS
 Clay code uses MDS codes for performing PFT and PRT through existing Erasure

code infrastructure in CEPH. A version of earlier accelerated Cauchy RS is used for
PFT and PRT

 Multiple memory allocation (both CPU and GPU side) and related copying were
involved with CEPH erasure code infrastructure. These were optimized by removing
redundant operations

 Optimized memory access and separate GPU kernel for PFT and PRT
 Clay code construction uses data copy and various transforms to create intermediate

and final results. Complete clay operations were moved to GPU space while using
CUDA/OpenCL primitives to achieve the copy operations

 An optimized and independent (2, 2) erasure code CUDA/OpenCL implementation is
used for PFT and PRT

2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 15

Environment

 Hardware
 16 core Intel(R) Xeon(R) CPU

E5-2660 @ 2.20GHz with
64GB ram

 NVIDIA GTX 1080
 Software

 CEPH 13.1.0 (mimic)
 CUDA 8.0 (driver 384.111)
 Intel OpenCL 2.1 for CPU

ErasureInterface

CRS

Reed Solomon (Vand)

Intel ISA-L

Locally repairable erasure

Shingled Erasure code

Jerasure library

OSD

RADOS

RBD ErasureCode
library

Accelerated CRS

Clay Code

Accelerated Clay for GPU

TestCase
Injector

Googletest

EC test Fixture

Result
abridger

Accelerated Clay for CPU

2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 16

Results – CRS REF Performance
Ex

ec
ut

io
n

M
B/

s

Encode and decode
performances for various
(k, m) values with
different chunk sizes for
CRS algorithm.

2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 17

Results – CRS REF with OpenCL Performance
Ex

ec
ut

io
n

M
B/

s

Encode and decode
performances for various
(k, m) values with
different chunk sizes for
CRS algorithm.

Ex
ec

ut
io

n
M

B/
s

CRS: Encode and
decode performance
decrease with higher (k,
m) values. In case of
decode the performance
declines with no. of
erasures similar to REF.

2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 18

Results – CRS REF with GPU Performance
Ex

ec
ut

io
n

M
B/

s

Encode and decode
performances for various
(k, m) values with
different chunk sizes for
CRS algorithm.

Ex
ec

ut
io

n
M

B/
s

CRS: Encode and
decode performance are
fairly consistent with
variation in (k,m) and
number of erasures

2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 19

Results – CLAY REF Performance
Ex

ec
ut

io
n

M
B/

s

Encode and decode
performances for various
(k, m) values with
different chunk sizes for
CLAY algorithm.

2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 20

Results – CLAY REF with OpenCL Performance
Ex

ec
ut

io
n

M
B/

s

Encode and decode
performances for various
(k, m) values with
different chunk sizes for
CLAY algorithm.

Ex
ec

ut
io

n
M

B/
s

CLAY: Encode
performance decrease
with higher (k, m)
values. In case of
decode the performance
is consistent with no. of
erasures similar to REF.

2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 21

Results – CLAY REF with GPU Performance
Ex

ec
ut

io
n

M
B/

s

Encode and decode
performances for various
(k, m) values with
different chunk sizes for
CLAY algorithm.

Ex
ec

ut
io

n
M

B/
s

CLAY: Encode
performance decrease
with higher (k, m)
values. In case of
decode the performance
is consistent with no. of
erasures.

2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 22

Results – CLAY Decode performance
Ex

ec
ut

io
n

M
B/

s

Ex
ec

ut
io

n
M

B/
s

(12, 6) Decode with one erasure is ~3x and
~2.5x faster in OpenCL and GPU respectively.

2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 23

Approximate (3-5x) gain is observed in case of
OpenCL and (10-18x) gain is observed in case of
GPU. Gain increases with number of erasures.

Results – CRS performance summary
Ex

ec
ut

io
n

M
B/

s

Ex
ec

ut
io

n
M

B/
s

Encode bandwidth is approximately 4x and 16x
for OpenCL and GPU respectively for (6, 4)
and it gradually increases up to 45x with
increase in (k, m) value. A slight decrease is
seen with (k, m) value of (20, 10).

2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 24

Results – CLAY performance summary
Ex

ec
ut

io
n

M
B/

s

Ex
ec

ut
io

n
M

B/
s

Encode bandwidth show 2-22x performance
improvements for OpenCL and ~7-77x
performance improvement for GPU for different
(k, m) values.

The decode gain reduces with higher k, m
values. It reduces from ~2.5x to 1.7x for
OpenCL and from ~15x to ~10x for GPU.

2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 25

Summary

 Accelerated Cauchy Reed Solomon (CRS) and Clay Code show good performance
gain compared to corresponding reference versions on GPU and with OpenCL. The
table below shows the maximum gain obtained in various cases.

 We continue the work of
 Testing new and improved CRS and Clay code with a CEPH Cluster comprising

four server machine with 16 core Intel Xeon CPU E5-2660 @ 2.20GHz, 64GB
ram with NVIDIA GTX 1080 card and 60TB storage array

OpenCL GPU OpenCL GPU
CRS 9.94 45.80 5.90 18.48
CLAY 22.84 78.78 2.63 14.88

Encode DecodeAlgo.

2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 26

Erasure code : Future possibilities

 Erasure Coding Use Cases
Application Workload Dependent

Resiliency
Storage Technology Dependent Resiliency
 Integration of EC with File System
Data Migration for Resiliency Optimization

2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 27

Reference

1. Mingyuan Xia, Mohit Saxena, Mario Blaum, and David A. Pease. A Tale of Two Erasure Codes in HDFS. Usenix conference
on File and storage technologies, 2015

2. Myna Vajha, Vinayak Ramkumar, Bhagyashree Puranik, Ganesh Kini, Elita Lobo, Birenjith Sasidharan, and P. Vijay
Kumar, Indian Institute of Science, Bangalore; Alexandar Barg and Min Ye, University of Maryland; Srinivasan
Narayanamurthy, Syed Hussain, and Siddhartha Nandi. Clay Codes: Moulding MDS Codes to Yield an MSR Code, Usenix
conference on File and storage technologies, 2018.

3. Chengjian Liu, Qiang Wang, Xiaowen Chu, Yiu-Wing Leung. G-CRS: GPU Accelerated Cauchy Reed-Solomon
Coding, IEEE Transactions on Parallel and Distributed Systems, 2018

4. Maheswaran Sathiamoorthy, Alexandros G. Dimakis, Megasthenis Asteris, Ramkumar Vadali, Dhruba Borthakur, Dimitris
Papailiopoulos, Scott Chen. XORing Elephants: Novel Erasure Codes for Big Data, Proceedings of the VLDB Endowment,
2013.

2018 Storage Developer Conference. © Aricent – Altran Group. All Rights Reserved. 28

Thank you

	Accelerated Erasure Coding: The New Frontier of Software Defined Storage
	Introduction to Data Resiliency
	Erasure Coding : A primer
	Erasure Coding : Read and Write
	Erasure Coding : Read and Write
	Erasure Coding : Shortcomings
	Erasure Coding : Modern approaches
	Erasure Coding : Modern approaches
	Erasure code @ Aricent – Altran Group
	Cauchy Reed-Solomon
	Clay Code : Construction
	Clay Code : Decode/Recovery Process
	Clay Code : Decode/Recovery Process
	Clay Code : Enhancements
	Environment
	Results – CRS REF Performance
	Results – CRS REF with OpenCL Performance
	Results – CRS REF with GPU Performance
	Results – CLAY REF Performance
	Results – CLAY REF with OpenCL Performance
	Results – CLAY REF with GPU Performance
	Results – CLAY Decode performance
	Results – CRS performance summary
	Results – CLAY performance summary
	Summary
	Erasure code : Future possibilities
	Reference
	Thank you

