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Introduction to Data Resiliency

0 Traditional RAID and Mirroring

Multiple disks are used for data placement thereby improving
performance and resiliency
7 High storage overhead; high rebuild times
7 Difficult to recover from co-related disk failures
0 Erasure coding

Erasure coding is data protection method in which data is
encoded to data blocks and parity blocks. These are then stored
across locations or storage nodes

7 Compute intensive
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Erasure Coding : A primer

0 A traditional erasure code is represented
as (k, m) where it encodes k data blocks
with m parity blocks writes them to k+m
storage nodes

3 An optimal (or MDS) code can recover
from any ‘m’ node failures

3 A popular code is Reed-Solomon (RS).
It has been successfully used in several
solutions like Linux RAID-6, Google file
system Il, Hadoop, Facebook, etc.
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Erasure Coding : Read and Write

Traditional erasure code
. A (4,2) erasure code has 4 data chunks and 2 parity chunks
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Erasure Coding : Read and Write

Traditional erasure code
. A (4,2) erasure code has 4 data chunks and 2 parity chunks
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Erasure Coding : Shortcomings

0 Encode is compute intensive
In case of Reed Solomon a generator matrix of
dimension (k+m, k) is used to create code
chunks from data chunks

7 Reconstruction is costly. It is triggered in case of

Degraded Read : This issue is caused when
application receives read exception while
reading a data block in a node due to software

Number of failed nodes in a Facebook
errors (hot spot effect or system updates) or cluster of 3,000 nodes for a month [4]
hardware errors

Node repair : The whole node is down
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Erasure Coding : Modern approaches

0 Locally recoverable code (LRC)

LRCs trade storage efficiency for < Globa
speeding up the recovery o1 [ o2 o5 | o0
process

LRCs use MDS code in a 8000
hierarchical manner by | 2

performing the encoding at
multiple levels
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Erasure Coding : Modern approaches

0 Regenerating codes

These are mostly MDS codes represented as (N, K, d, a, )
which divides the chunks into smaller sub-chunks during the
encoding process

Reduce the bandwidth for the repair by reducing the amount of
data read from each node

Further classified as minimum storage regenerating codes and
minimum bandwidth regenerating codes
7 Highly compute intensive
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Erasure code @ Aricent — Altran Group

d Improvement in storage efficiency, Latency.

Employ new generation Clay Code[2]. Clay Code has
7 Least possible storage overhead
7 Least possible repair bandwidth and disk read

7 Shown 3x repair time reduction and up to 30% and 106% improvement in
degraded read and write with CEPH

a3 Acceleration of Erasure Coding
Offloading the computation to GPU
7 Accelerated Cauchy RS (CRS) from Jerasure library and Clay Code

0 Integrate the accelerated erasure code algorithms to CEPH.
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Clay Code : Construction

Uncoupled data cube

’D
7 Consider the (2, 2) encoding, each sub-chunk Ul{-;
IS represented using a point in plane. Sub- PRY 4=
chunks are further classified as coupled (blue N vT
C \
dots) and uncoupled (red-dots) Ry ‘;‘;wj
é

Using uncoupled pairs copied as is, a Pairwise '
Reverse Transform (PRT) is used on paired sub- =
A (2, 2) Clay Code 2

9]

chunks to obtain elements of uncoupled data
cube (cube on RHS). A MDS code is used to get
rest of uncoupled data cube

Using newly constructed uncoupled data cube a
Pairwise Forward Transform (PFT) is applied to
obtain the code chunks. Both PRT and PFT are
(2, 2) MDS codes
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Clay Code : Decode/Recovery Process

0 Consider the following single data node erasure case

Uncoupled data cube is created using PRT and copying the unpaired
sub-chunks

MDS decode is performed on the planes selected for recovery and
uncoupled sub-chunks are copied

S D @ 2018 Storage Developer Conference. © Aricent— Altran Group. All Rights Reserv



Clay Code : Decode/Recovery Process

With clay code construction any two sub-chunks in the set {U, U*, C,
C*} can be recovered from the remaining two sub-chunks using PFT.
Here C1* is computed from C1, U1 and C2* from C2, U2

The repair bandwidth is reduced in this method since data from only
2(half) Z-planes are used for the recovery process
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Clay Code : Enhancements

7 Use of accelerated Cauchy RS

Clay code uses MDS codes for performing PFT and PRT through existing Erasure
code infrastructure in CEPH. A version of earlier accelerated Cauchy RS is used for
PFT and PRT

Multiple memory allocation (both CPU and GPU side) and related copying were
involved with CEPH erasure code infrastructure. These were optimized by removing
redundant operations

0 Optimized memory access and separate GPU kernel for PFT and PRT

Clay code construction uses data copy and various transforms to create intermediate
and final results. Complete clay operations were moved to GPU space while using
CUDA/OpenCL primitives to achieve the copy operations

An optimized and independent (2, 2) erasure code CUDA/OpenCL implementation is
used for PFT and PRT
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Environment

7 Hardware

7 Software

16 core Intel(R) Xeon(R) CPU —

——————

0OsD

E5-2660 @ 2.20GHz with = W
64GB ram — 1
NVIDIA GTX 1080 G!-_" 5, !
! ECtest Fixture |
CEPH 13.1.0 (mimic) . (e |
CUDA 80 (driver 384.111) | &

Intel OpenCL 2.1 for CPU

SDC

abridger

_——— - ————
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Results — CRS REF Performance
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Results — CRS REF with OpenCL Performance

CRS REF ENCODE
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Results — CRS REF with GPU Performance
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Results — CLAY REF Performance

CLAY REF ENCODE CLAY REF DECODE Encode and decode

=2ME mAMB mEME oD mAME m A performances for various
(k, m) values with
different chunk sizes for
CLAY algorithm.

27.91

25.76
2637

| 24.24
25.B5

Execution MB/s
19.74
I 25.07
15.21
19.40
I :::o
3.81
s
I s
0.20
| 0.0
| CRE]
24.6%9
I 2 s
12.37
16.64
20.21
12.67
17.02
20.25

06_04 12_06 18_09 20_10 06_D4_E2 06_D4_E3 12_06_E2 12_06_E3

S D @ 2018 Storage Developer Conference. © Aricent— Altran Group. All Rights




Results — CLAY REF with OpenCL Performance
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Results — CLAY REF with GPU Performance
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Results — CLAY Decode performance
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Execution MB/s

Results — CRS performance summary

CRS REF, OPENCL, GPU ENCODE FOR 4MB DATA
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Approximate (3-5x) gain is observed in case of
OpenCL and (10-18x) gain is observed in case of
GPU. Gain increases with number of erasures.
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seen with (k, m) value of (20, 10).
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Execution MB/s

Results — CLAY performance summary

CLAY REF, OPENCL, GPU ENCODE FOR 4MB DATA
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Summary

7 Accelerated Cauchy Reed Solomon (CRS) and Clay Code show good performance
gain compared to corresponding reference versions on GPU and with OpenCL. The
table below shows the maximum gain obtained in various cases.

Algo. Encode Decode
OpenCL GPU OpenCL GPU

CRS 9.94 45.80 5.90 18.48

CLAY 22.84 78.78 2.63 14.88

0 We continue the work of

Testing new and improved CRS and Clay code with a CEPH Cluster comprising
four server machine with 16 core Intel Xeon CPU E5-2660 @ 2.20GHz, 64GB
ram with NVIDIA GTX 1080 card and 60TB storage array
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Erasure code : Future possibilities

1 Erasure Coding Use Cases

Application Workload Dependent
Resiliency

Storage Technology Dependent Resiliency
Integration of EC with File System
Data Migration for Resiliency Optimization
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Thank you
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