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Storage @ LANL

 Simulation HPC site
Large jobs (30%+ of system, up to ~80%)
Run for 6-12 months for a computing campaign
Defensive checkpointing in both N-1 and N-N 

forms – up to petabyte scale files



2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 3

Storage @ LANL
60 PB30 GB/s
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Storage @ LANL

 Many layers of storage
Explicit tiering between layers by users
2 new layers with Trinity – Burst Buffer and 

Campaign
Complicated the user’s job of shepherding data 

even further
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Why complicate matters?

 Burst buffer for economic reasons ($ / GB/s)
 Campaign for…economic reasons ($ / GB/s and $ / GB)
Unintuitive at first, but much easier to scale disk 

than tape for bandwidth
…but existing POSIX solutions were expensive



2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 6

Why build our own file system?

 Existing POSIX solutions either:
Expensive
Unsafe
Unsuitable to workload / users
Combination of the above 
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Enter MarFS

 This is our current “Campaign” tier
 We compromise a key part of POSIX:

 Update in place / seek on write
 Given that compromise, we gain a lot

 IO shaping is possible (save IOPs on write)
 IO protection is now easy™ (batch IO efficiency)

 Design goals: transparency, protection of data above all 
else, recoverability, and ease of administration
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MarFS in a nutshell

 FUSE daemon – full POSIX metadata, full data 
read access

 Library – simple API for all access, abstracted calls 
for simplicity via DAL/MDAL

 pftool – optimized parallel data movement tool
 Admin utilities – quota generation, trash 

management, offline packing
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Scalability at its core
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Metadata scaling stunt

 We built a test harness with MPI to push the limits of the MarFS metadata design
 Initial MD scaling runs on Cielo (1.1 PF, ~140,000 cores, ~9000 nodes)

 968 billion files, one single directory
 835 million file creations per second to metadata repos on each node
 No cheating! Every create traversed the network from client to server

 QD=1 for each client, 8 clients per node, 8 servers per node
 Further testing on Mustang (230 TF, ~38,000 cores, ~1600 nodes)

 Large directory readdir tested from 10-50 nodes (sequential and parallel)
 Peak of 300 million files per second across 50 nodes
 More than 400X speedup over a single client sequential readdir
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Sample Multi File
/GPFS-MarFS-md1 /GPFS-MarFS-mdN

Dir1.1

MultiFile - Attrs: uid, gid, mode, size, dates, etc.
Xattrs - objid repo=1, id=Obj002.,  objoffs=0,  chunksize=256M, ObjType=Multi, NumObj=2, etc.

trashdir

/MarFS top level namespace aggregation

Object System 1 Object System X

Dir2.1

Obj002.1

Obj002.2
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Sample Packed File
/GPFS-MarFS-md1 /GPFS-MarFS-mdN

Dir1.1

UniFile - Attrs: uid, gid, mode, size, dates, etc.
Xattrs - objid repo=1, id=Obj003,  objoffs=4096,  chunksize=256M, Objtype=Packed, NumObj=1, 
Ojb=4 of 5, etc.

trashdir

/MarFS top level namespace aggregation
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Object System 1 Object System X

Dir2.1

Obj003
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Multi-Component Repositories

 Initially storage via commodity object storage
Very “black box”, vendor lock-in, design goals

 Developed our own “object” storage layer
Lean on local expertise in ZFS
Completely transparent layout
Erasure at two levels
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Data Layout
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File Format
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Lessons learned (so far)

 Transparency at the lower levels of storage is 
absolutely key to problem analysis and repair

 Reducing IOPs requirements at the bottom allows 
efficient use of un-agile disks (shingled HDDs)

 Simple design makes it easy to discover, analyze, 
and repair any problems as they come up
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Ongoing work

 RDMA native transport
 “Fuzzy” DAL
 Fine-grained IO timing
 Live capacity/storage migration
 Something even more “cold”…
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So we have this MarFS thing…

 Scalable namespaces
 Quotas
 Easy to understand/administer
 Optimized write IO characteristics
 …can we make an archive out of this?
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Enter Marchive

 MarFS + Archive == Marchive
 Very simple extension of the MarFS paradigm
Just replace the ZFS arrays with tape!
Lose agile read from FUSE
Batch process ingest/recall on tape
Mostly just automation and UX challenges
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Many layers of storage

 By design – users will keep everything if allowed, and HSMs only 
contribute to that bloat

 Data management is entirely user-driven
 Users go find unneeded data and delete, if prodded
 Users have no easy way to find particular datasets unless they have 

a good hierarchy or they remember where they put it
 Users have bad memories and bad hierarchies…(you can see 

where this leads)
 ...lower (longer) tiers of storage systems accumulate cruft over time
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Enter GUFI
 Unified index over home, project, scratch, campaign, and archive
 Metadata only with attribute support
 Shared index for users and admins
 Parallel search capabilities that are very fast (minutes for billions of files/dirs)
 Can appear as mounted file system where you get a virtual image of your file metadata 

based on query input
 Full/Incremental update from sources with reasonable update time/annoyance
 Leverage existing tech as much as possible both hdwr and software:  flash, threads, 

clusters, sql as part of the interface, commercial db tech, commercial indexing systems, 
commercial file system tech, threading/parallel process/node run times, src file system 
full/incremental capture capabilities, posix tree attributes (permissions, hierarchy 
representation, etc.), open source/agnostic to leveraged parts where possible.

 Simple so that an admin can easily understand/enhance/troubleshoot
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Initial thoughts
 Why not a flat namespace?

 Performance is great, but…
 Rename high in the tree is terribly costly
 Security becomes a nightmare if users/admins can access the namespace

 Leverage things that already work well, reduce required records to scan:
 POSIX permissions / tree walk (readdir+)
 Breadth first search for parallelization
 Our trees have inherent namespace divisions for parallelism
 Embedded DBs are fast if not many joins and individual DB size < TB
 Flash storage is cheap enough to hold everything with order ~10K IOPs each
 Entries in file system reduce to essentially <dir count> * 3
 Dense directories reduce footprint dramatically
 SQL is easily utilized for general queries of attributes
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Prototype
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Draft DB Schemas
 Parent-Inode mapping file   “directories-parent-inode directories Inode”

 Parent inode is only kept for directories, not for files as that kills rename/move function performance
 "CREATE TABLE entries(

 name TEXT PRIMARY KEY, name of file (Not path due to renames)
 type TEXT, inode INT, f for file l for link    inode
 mode INT, posix mode bits
 nlink INT, number of links
 uid INT, gid INT, uid and gid
 size INT, blksize INT, size and blocksize
 blocks INT, blocks
 atime INT, access time
 mtime INT, file contents modification time
 ctime INT, metadata change time
 linkname TEXT, if link this is path to link
 xattrs TEXT);"; single text string, key/value pairs w/ delimiters
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Draft DB Schemas (continued)
 "CREATE TABLE summary( summary info for this directory

 name TEXT PRIMARY KEY, name not path due to rename
 type TEXT, inode INT, d for directory inode
 mode INT, posix mode bits
 nlink INT, number of links
 uid INT, gid INT, uid gid
 size INT, blksize INT, blocks INT, size, blocksize, blocks
 atime INT, mtime INT, ctime INT, access time,  dir contents mod time, md chg time
 linkname TEXT, xattrs TEXT, if link, path to link, xattrs key/value delimited string
 totfiles INT, totlinks INT, tot files in dir, tot links in dir
 minuid INT, maxuid INT, mingid INT, maxgid INT, min and max uid and gid
 minsize INT, maxsize INT, minimum file size and max file size
 totltk INT, totmtk INT, totltm INT, total number of files lt KB mt KB, lt MB,
 totmtm INT, totmtg INT, totmtt INT, total number of files mt MB mt GB, mt TB
 totsize INT, total bytes in files in dir
 minctime INT, maxctime INT, min max ctime
 minmtime INT, maxmtime INT, min max mtime
 minatime INT, maxatime INT, min max mtime
 minblocks INT, maxblocks INT, min max blocks
 totxattr INT, number of files with xattrs
 depth INT);"; depth this directory is in the tree
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Draft DB Schemas (continued)
 "CREATE TABLE treesummary( summary info for this tree

 totsubdirs INT, tot subdirs in tree
 maxsubdirfiles INT, maxsubdirlinks INT, maxfiles in a subdir max links in a subdir
 maxsubdirsize INT, most bytes in any subdir
 totfiles INT, totlinks INT, tot files in tree, tot links in tree
 minuid INT, maxuid INT, mingid INT, maxgid INT, min and max uid and gid
 minsize INT, maxsize INT, minimum file size and max file size
 totltk INT, totmtk INT, totltm INT, total number of files lt KB mt KB, lt MB,
 totmtm INT, totmtg INT, totmtt INT, total number of files mt MB mt GB, mt TB
 totsize INT, total bytes in files in tree
 minctime INT, maxctime INT, min max ctime
 minmtime INT, maxmtime INT, min max mtime
 minatime INT, maxatime INT, min max mtime
 minblocks INT, maxblocks INT, min max blocks
 totxattr INT, number of files with xattrs
 depth INT);"; depth this tree summary is in the tree



2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 27

Programs Included / In Progress
 DFW – depth first walker, prints pinode, inode, path, attrs, xattrs
 BFW – breadth first walker, prints pinode, inode, path, attrs, xattrs
 BFWI – breadth first walker to create GUFI index tree from source tree
 BFMI – walk Robinhood MySQL and list tree and/or create GUFI index tree
 BFTI – breadth first walker that summarizes a GUFI tree from a source path down, can 

create treesummary index of that info
 BFQ – breadth first walker query that queries GUFI index tree

 Specify SQL for treesummary, directorysummary, and entries DBs
 BFFUSE – FUSE interface to run POSIX md tools on a GUFI search result
 Querydb – dumps treesummary, directorysummar, and optional entry databases given a 

directory in GUFI as input
 Programs to update, incremental update (in progress):

 Lustre, GPFS, HPSS
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Early Performance Indicators

 All tests performed on a mid 2014 Macbook (quad core + nvme SSD)
 No tree indexes used
 ~136k directories, mostly small directories, 10 1M entry dirs, 20 100K size dirs, and 

10 20M size dirs
 ~250M files total represented
 Search of all files: 2m10s (~1.75M files/sec)
 Search of all files and dirs: 2m19s (~1.63 M entries/sec)
 Search of all files and dirs, but exclude some very large dirs: 1m18s
 Search of all files and dirs, but exclude all < 1000 file directories: 1m59s

 …on a laptop!
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Learn more!
 https://github.com/mar-file-system/GUFI
 https://github.com/mar-file-system/marfs
 https://github.com/pftool/pftool
Open Source
BSD License
Partners Welcome

https://github.com/mar-file-system/GUFI
https://github.com/mar-file-system/marfs
https://github.com/pftool/pftool
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