
2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 1

LA-UR-18-28675

MarFS, Marchive, and GUFI –
Long Term Storage Strategies at LANL

David Bonnie
Los Alamos National Laboratory

US Department of Energy

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 2

Storage @ LANL

 Simulation HPC site
Large jobs (30%+ of system, up to ~80%)
Run for 6-12 months for a computing campaign
Defensive checkpointing in both N-1 and N-N

forms – up to petabyte scale files

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 3

Storage @ LANL
60 PB30 GB/s

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 4

Storage @ LANL

 Many layers of storage
Explicit tiering between layers by users
2 new layers with Trinity – Burst Buffer and

Campaign
Complicated the user’s job of shepherding data

even further

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 5

Why complicate matters?

 Burst buffer for economic reasons ($ / GB/s)
 Campaign for…economic reasons ($ / GB/s and $ / GB)
Unintuitive at first, but much easier to scale disk

than tape for bandwidth
…but existing POSIX solutions were expensive

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 6

Why build our own file system?

 Existing POSIX solutions either:
Expensive
Unsafe
Unsuitable to workload / users
Combination of the above 

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 7

Enter MarFS

 This is our current “Campaign” tier
 We compromise a key part of POSIX:

 Update in place / seek on write
 Given that compromise, we gain a lot

 IO shaping is possible (save IOPs on write)
 IO protection is now easy™ (batch IO efficiency)

 Design goals: transparency, protection of data above all
else, recoverability, and ease of administration

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 8

MarFS in a nutshell

 FUSE daemon – full POSIX metadata, full data
read access

 Library – simple API for all access, abstracted calls
for simplicity via DAL/MDAL

 pftool – optimized parallel data movement tool
 Admin utilities – quota generation, trash

management, offline packing

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 9

Scalability at its core

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 10

Metadata scaling stunt

 We built a test harness with MPI to push the limits of the MarFS metadata design
 Initial MD scaling runs on Cielo (1.1 PF, ~140,000 cores, ~9000 nodes)

 968 billion files, one single directory
 835 million file creations per second to metadata repos on each node
 No cheating! Every create traversed the network from client to server

 QD=1 for each client, 8 clients per node, 8 servers per node
 Further testing on Mustang (230 TF, ~38,000 cores, ~1600 nodes)

 Large directory readdir tested from 10-50 nodes (sequential and parallel)
 Peak of 300 million files per second across 50 nodes
 More than 400X speedup over a single client sequential readdir

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 11

Sample Multi File
/GPFS-MarFS-md1 /GPFS-MarFS-mdN

Dir1.1

MultiFile - Attrs: uid, gid, mode, size, dates, etc.
Xattrs - objid repo=1, id=Obj002., objoffs=0, chunksize=256M, ObjType=Multi, NumObj=2, etc.

trashdir

/MarFS top level namespace aggregation

Object System 1 Object System X

Dir2.1

Obj002.1

Obj002.2

M
e
t
a
d
a
t
a

D
a
t
a

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 12

Sample Packed File
/GPFS-MarFS-md1 /GPFS-MarFS-mdN

Dir1.1

UniFile - Attrs: uid, gid, mode, size, dates, etc.
Xattrs - objid repo=1, id=Obj003, objoffs=4096, chunksize=256M, Objtype=Packed, NumObj=1,
Ojb=4 of 5, etc.

trashdir

/MarFS top level namespace aggregation

M
e
t
a
d
a
t
a

D
a
t
a

Object System 1 Object System X

Dir2.1

Obj003

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 13

Multi-Component Repositories

 Initially storage via commodity object storage
Very “black box”, vendor lock-in, design goals

 Developed our own “object” storage layer
Lean on local expertise in ZFS
Completely transparent layout
Erasure at two levels

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 14

Data Layout

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 15

File Format

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 16

Lessons learned (so far)

 Transparency at the lower levels of storage is
absolutely key to problem analysis and repair

 Reducing IOPs requirements at the bottom allows
efficient use of un-agile disks (shingled HDDs)

 Simple design makes it easy to discover, analyze,
and repair any problems as they come up

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 17

Ongoing work

 RDMA native transport
 “Fuzzy” DAL
 Fine-grained IO timing
 Live capacity/storage migration
 Something even more “cold”…

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 18

So we have this MarFS thing…

 Scalable namespaces
 Quotas
 Easy to understand/administer
 Optimized write IO characteristics
 …can we make an archive out of this?

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 19

Enter Marchive

 MarFS + Archive == Marchive
 Very simple extension of the MarFS paradigm
Just replace the ZFS arrays with tape!
Lose agile read from FUSE
Batch process ingest/recall on tape
Mostly just automation and UX challenges

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 20

Many layers of storage

 By design – users will keep everything if allowed, and HSMs only
contribute to that bloat

 Data management is entirely user-driven
 Users go find unneeded data and delete, if prodded
 Users have no easy way to find particular datasets unless they have

a good hierarchy or they remember where they put it
 Users have bad memories and bad hierarchies…(you can see

where this leads)
 ...lower (longer) tiers of storage systems accumulate cruft over time

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 21

Enter GUFI
 Unified index over home, project, scratch, campaign, and archive
 Metadata only with attribute support
 Shared index for users and admins
 Parallel search capabilities that are very fast (minutes for billions of files/dirs)
 Can appear as mounted file system where you get a virtual image of your file metadata

based on query input
 Full/Incremental update from sources with reasonable update time/annoyance
 Leverage existing tech as much as possible both hdwr and software: flash, threads,

clusters, sql as part of the interface, commercial db tech, commercial indexing systems,
commercial file system tech, threading/parallel process/node run times, src file system
full/incremental capture capabilities, posix tree attributes (permissions, hierarchy
representation, etc.), open source/agnostic to leveraged parts where possible.

 Simple so that an admin can easily understand/enhance/troubleshoot

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 22

Initial thoughts
 Why not a flat namespace?

 Performance is great, but…
 Rename high in the tree is terribly costly
 Security becomes a nightmare if users/admins can access the namespace

 Leverage things that already work well, reduce required records to scan:
 POSIX permissions / tree walk (readdir+)
 Breadth first search for parallelization
 Our trees have inherent namespace divisions for parallelism
 Embedded DBs are fast if not many joins and individual DB size < TB
 Flash storage is cheap enough to hold everything with order ~10K IOPs each
 Entries in file system reduce to essentially <dir count> * 3
 Dense directories reduce footprint dramatically
 SQL is easily utilized for general queries of attributes

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 23

Prototype

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 24

Draft DB Schemas
 Parent-Inode mapping file “directories-parent-inode directories Inode”

 Parent inode is only kept for directories, not for files as that kills rename/move function performance
 "CREATE TABLE entries(

 name TEXT PRIMARY KEY, name of file (Not path due to renames)
 type TEXT, inode INT, f for file l for link inode
 mode INT, posix mode bits
 nlink INT, number of links
 uid INT, gid INT, uid and gid
 size INT, blksize INT, size and blocksize
 blocks INT, blocks
 atime INT, access time
 mtime INT, file contents modification time
 ctime INT, metadata change time
 linkname TEXT, if link this is path to link
 xattrs TEXT);"; single text string, key/value pairs w/ delimiters

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 25

Draft DB Schemas (continued)
 "CREATE TABLE summary(summary info for this directory

 name TEXT PRIMARY KEY, name not path due to rename
 type TEXT, inode INT, d for directory inode
 mode INT, posix mode bits
 nlink INT, number of links
 uid INT, gid INT, uid gid
 size INT, blksize INT, blocks INT, size, blocksize, blocks
 atime INT, mtime INT, ctime INT, access time, dir contents mod time, md chg time
 linkname TEXT, xattrs TEXT, if link, path to link, xattrs key/value delimited string
 totfiles INT, totlinks INT, tot files in dir, tot links in dir
 minuid INT, maxuid INT, mingid INT, maxgid INT, min and max uid and gid
 minsize INT, maxsize INT, minimum file size and max file size
 totltk INT, totmtk INT, totltm INT, total number of files lt KB mt KB, lt MB,
 totmtm INT, totmtg INT, totmtt INT, total number of files mt MB mt GB, mt TB
 totsize INT, total bytes in files in dir
 minctime INT, maxctime INT, min max ctime
 minmtime INT, maxmtime INT, min max mtime
 minatime INT, maxatime INT, min max mtime
 minblocks INT, maxblocks INT, min max blocks
 totxattr INT, number of files with xattrs
 depth INT);"; depth this directory is in the tree

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 26

Draft DB Schemas (continued)
 "CREATE TABLE treesummary(summary info for this tree

 totsubdirs INT, tot subdirs in tree
 maxsubdirfiles INT, maxsubdirlinks INT, maxfiles in a subdir max links in a subdir
 maxsubdirsize INT, most bytes in any subdir
 totfiles INT, totlinks INT, tot files in tree, tot links in tree
 minuid INT, maxuid INT, mingid INT, maxgid INT, min and max uid and gid
 minsize INT, maxsize INT, minimum file size and max file size
 totltk INT, totmtk INT, totltm INT, total number of files lt KB mt KB, lt MB,
 totmtm INT, totmtg INT, totmtt INT, total number of files mt MB mt GB, mt TB
 totsize INT, total bytes in files in tree
 minctime INT, maxctime INT, min max ctime
 minmtime INT, maxmtime INT, min max mtime
 minatime INT, maxatime INT, min max mtime
 minblocks INT, maxblocks INT, min max blocks
 totxattr INT, number of files with xattrs
 depth INT);"; depth this tree summary is in the tree

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 27

Programs Included / In Progress
 DFW – depth first walker, prints pinode, inode, path, attrs, xattrs
 BFW – breadth first walker, prints pinode, inode, path, attrs, xattrs
 BFWI – breadth first walker to create GUFI index tree from source tree
 BFMI – walk Robinhood MySQL and list tree and/or create GUFI index tree
 BFTI – breadth first walker that summarizes a GUFI tree from a source path down, can

create treesummary index of that info
 BFQ – breadth first walker query that queries GUFI index tree

 Specify SQL for treesummary, directorysummary, and entries DBs
 BFFUSE – FUSE interface to run POSIX md tools on a GUFI search result
 Querydb – dumps treesummary, directorysummar, and optional entry databases given a

directory in GUFI as input
 Programs to update, incremental update (in progress):

 Lustre, GPFS, HPSS

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 28

Early Performance Indicators

 All tests performed on a mid 2014 Macbook (quad core + nvme SSD)
 No tree indexes used
 ~136k directories, mostly small directories, 10 1M entry dirs, 20 100K size dirs, and

10 20M size dirs
 ~250M files total represented
 Search of all files: 2m10s (~1.75M files/sec)
 Search of all files and dirs: 2m19s (~1.63 M entries/sec)
 Search of all files and dirs, but exclude some very large dirs: 1m18s
 Search of all files and dirs, but exclude all < 1000 file directories: 1m59s

 …on a laptop!

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 29

Learn more!
 https://github.com/mar-file-system/GUFI
 https://github.com/mar-file-system/marfs
 https://github.com/pftool/pftool
Open Source
BSD License
Partners Welcome

https://github.com/mar-file-system/GUFI
https://github.com/mar-file-system/marfs
https://github.com/pftool/pftool

	MarFS, Marchive, and GUFI – �Long Term Storage Strategies at LANL
	Storage @ LANL
	Storage @ LANL
	Storage @ LANL
	Why complicate matters?
	Why build our own file system?
	Enter MarFS
	MarFS in a nutshell
	Scalability at its core
	Metadata scaling stunt
	Sample Multi File
	Sample Packed File
	Multi-Component Repositories
	Data Layout
	File Format
	Lessons learned (so far)
	Ongoing work	
	So we have this MarFS thing…
	Enter Marchive
	Many layers of storage
	Enter GUFI
	Initial thoughts
	Prototype
	Draft DB Schemas
	Draft DB Schemas (continued)
	Draft DB Schemas (continued)
	Programs Included / In Progress
	Early Performance Indicators
	Learn more!

