
2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 1

LA-UR-18-28675

MarFS, Marchive, and GUFI –
Long Term Storage Strategies at LANL

David Bonnie
Los Alamos National Laboratory

US Department of Energy

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 2

Storage @ LANL

 Simulation HPC site
Large jobs (30%+ of system, up to ~80%)
Run for 6-12 months for a computing campaign
Defensive checkpointing in both N-1 and N-N

forms – up to petabyte scale files

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 3

Storage @ LANL
60 PB30 GB/s

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 4

Storage @ LANL

 Many layers of storage
Explicit tiering between layers by users
2 new layers with Trinity – Burst Buffer and

Campaign
Complicated the user’s job of shepherding data

even further

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 5

Why complicate matters?

 Burst buffer for economic reasons ($ / GB/s)
 Campaign for…economic reasons ($ / GB/s and $ / GB)
Unintuitive at first, but much easier to scale disk

than tape for bandwidth
…but existing POSIX solutions were expensive

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 6

Why build our own file system?

 Existing POSIX solutions either:
Expensive
Unsafe
Unsuitable to workload / users
Combination of the above

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 7

Enter MarFS

 This is our current “Campaign” tier
 We compromise a key part of POSIX:

 Update in place / seek on write
 Given that compromise, we gain a lot

 IO shaping is possible (save IOPs on write)
 IO protection is now easy™ (batch IO efficiency)

 Design goals: transparency, protection of data above all
else, recoverability, and ease of administration

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 8

MarFS in a nutshell

 FUSE daemon – full POSIX metadata, full data
read access

 Library – simple API for all access, abstracted calls
for simplicity via DAL/MDAL

 pftool – optimized parallel data movement tool
 Admin utilities – quota generation, trash

management, offline packing

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 9

Scalability at its core

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 10

Metadata scaling stunt

 We built a test harness with MPI to push the limits of the MarFS metadata design
 Initial MD scaling runs on Cielo (1.1 PF, ~140,000 cores, ~9000 nodes)

 968 billion files, one single directory
 835 million file creations per second to metadata repos on each node
 No cheating! Every create traversed the network from client to server

 QD=1 for each client, 8 clients per node, 8 servers per node
 Further testing on Mustang (230 TF, ~38,000 cores, ~1600 nodes)

 Large directory readdir tested from 10-50 nodes (sequential and parallel)
 Peak of 300 million files per second across 50 nodes
 More than 400X speedup over a single client sequential readdir

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 11

Sample Multi File
/GPFS-MarFS-md1 /GPFS-MarFS-mdN

Dir1.1

MultiFile - Attrs: uid, gid, mode, size, dates, etc.
Xattrs - objid repo=1, id=Obj002., objoffs=0, chunksize=256M, ObjType=Multi, NumObj=2, etc.

trashdir

/MarFS top level namespace aggregation

Object System 1 Object System X

Dir2.1

Obj002.1

Obj002.2

M
e
t
a
d
a
t
a

D
a
t
a

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 12

Sample Packed File
/GPFS-MarFS-md1 /GPFS-MarFS-mdN

Dir1.1

UniFile - Attrs: uid, gid, mode, size, dates, etc.
Xattrs - objid repo=1, id=Obj003, objoffs=4096, chunksize=256M, Objtype=Packed, NumObj=1,
Ojb=4 of 5, etc.

trashdir

/MarFS top level namespace aggregation

M
e
t
a
d
a
t
a

D
a
t
a

Object System 1 Object System X

Dir2.1

Obj003

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 13

Multi-Component Repositories

 Initially storage via commodity object storage
Very “black box”, vendor lock-in, design goals

 Developed our own “object” storage layer
Lean on local expertise in ZFS
Completely transparent layout
Erasure at two levels

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 14

Data Layout

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 15

File Format

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 16

Lessons learned (so far)

 Transparency at the lower levels of storage is
absolutely key to problem analysis and repair

 Reducing IOPs requirements at the bottom allows
efficient use of un-agile disks (shingled HDDs)

 Simple design makes it easy to discover, analyze,
and repair any problems as they come up

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 17

Ongoing work

 RDMA native transport
 “Fuzzy” DAL
 Fine-grained IO timing
 Live capacity/storage migration
 Something even more “cold”…

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 18

So we have this MarFS thing…

 Scalable namespaces
 Quotas
 Easy to understand/administer
 Optimized write IO characteristics
 …can we make an archive out of this?

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 19

Enter Marchive

 MarFS + Archive == Marchive
 Very simple extension of the MarFS paradigm
Just replace the ZFS arrays with tape!
Lose agile read from FUSE
Batch process ingest/recall on tape
Mostly just automation and UX challenges

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 20

Many layers of storage

 By design – users will keep everything if allowed, and HSMs only
contribute to that bloat

 Data management is entirely user-driven
 Users go find unneeded data and delete, if prodded
 Users have no easy way to find particular datasets unless they have

a good hierarchy or they remember where they put it
 Users have bad memories and bad hierarchies…(you can see

where this leads)
 ...lower (longer) tiers of storage systems accumulate cruft over time

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 21

Enter GUFI
 Unified index over home, project, scratch, campaign, and archive
 Metadata only with attribute support
 Shared index for users and admins
 Parallel search capabilities that are very fast (minutes for billions of files/dirs)
 Can appear as mounted file system where you get a virtual image of your file metadata

based on query input
 Full/Incremental update from sources with reasonable update time/annoyance
 Leverage existing tech as much as possible both hdwr and software: flash, threads,

clusters, sql as part of the interface, commercial db tech, commercial indexing systems,
commercial file system tech, threading/parallel process/node run times, src file system
full/incremental capture capabilities, posix tree attributes (permissions, hierarchy
representation, etc.), open source/agnostic to leveraged parts where possible.

 Simple so that an admin can easily understand/enhance/troubleshoot

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 22

Initial thoughts
 Why not a flat namespace?

 Performance is great, but…
 Rename high in the tree is terribly costly
 Security becomes a nightmare if users/admins can access the namespace

 Leverage things that already work well, reduce required records to scan:
 POSIX permissions / tree walk (readdir+)
 Breadth first search for parallelization
 Our trees have inherent namespace divisions for parallelism
 Embedded DBs are fast if not many joins and individual DB size < TB
 Flash storage is cheap enough to hold everything with order ~10K IOPs each
 Entries in file system reduce to essentially <dir count> * 3
 Dense directories reduce footprint dramatically
 SQL is easily utilized for general queries of attributes

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 23

Prototype

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 24

Draft DB Schemas
 Parent-Inode mapping file “directories-parent-inode directories Inode”

 Parent inode is only kept for directories, not for files as that kills rename/move function performance
 "CREATE TABLE entries(

 name TEXT PRIMARY KEY, name of file (Not path due to renames)
 type TEXT, inode INT, f for file l for link inode
 mode INT, posix mode bits
 nlink INT, number of links
 uid INT, gid INT, uid and gid
 size INT, blksize INT, size and blocksize
 blocks INT, blocks
 atime INT, access time
 mtime INT, file contents modification time
 ctime INT, metadata change time
 linkname TEXT, if link this is path to link
 xattrs TEXT);"; single text string, key/value pairs w/ delimiters

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 25

Draft DB Schemas (continued)
 "CREATE TABLE summary(summary info for this directory

 name TEXT PRIMARY KEY, name not path due to rename
 type TEXT, inode INT, d for directory inode
 mode INT, posix mode bits
 nlink INT, number of links
 uid INT, gid INT, uid gid
 size INT, blksize INT, blocks INT, size, blocksize, blocks
 atime INT, mtime INT, ctime INT, access time, dir contents mod time, md chg time
 linkname TEXT, xattrs TEXT, if link, path to link, xattrs key/value delimited string
 totfiles INT, totlinks INT, tot files in dir, tot links in dir
 minuid INT, maxuid INT, mingid INT, maxgid INT, min and max uid and gid
 minsize INT, maxsize INT, minimum file size and max file size
 totltk INT, totmtk INT, totltm INT, total number of files lt KB mt KB, lt MB,
 totmtm INT, totmtg INT, totmtt INT, total number of files mt MB mt GB, mt TB
 totsize INT, total bytes in files in dir
 minctime INT, maxctime INT, min max ctime
 minmtime INT, maxmtime INT, min max mtime
 minatime INT, maxatime INT, min max mtime
 minblocks INT, maxblocks INT, min max blocks
 totxattr INT, number of files with xattrs
 depth INT);"; depth this directory is in the tree

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 26

Draft DB Schemas (continued)
 "CREATE TABLE treesummary(summary info for this tree

 totsubdirs INT, tot subdirs in tree
 maxsubdirfiles INT, maxsubdirlinks INT, maxfiles in a subdir max links in a subdir
 maxsubdirsize INT, most bytes in any subdir
 totfiles INT, totlinks INT, tot files in tree, tot links in tree
 minuid INT, maxuid INT, mingid INT, maxgid INT, min and max uid and gid
 minsize INT, maxsize INT, minimum file size and max file size
 totltk INT, totmtk INT, totltm INT, total number of files lt KB mt KB, lt MB,
 totmtm INT, totmtg INT, totmtt INT, total number of files mt MB mt GB, mt TB
 totsize INT, total bytes in files in tree
 minctime INT, maxctime INT, min max ctime
 minmtime INT, maxmtime INT, min max mtime
 minatime INT, maxatime INT, min max mtime
 minblocks INT, maxblocks INT, min max blocks
 totxattr INT, number of files with xattrs
 depth INT);"; depth this tree summary is in the tree

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 27

Programs Included / In Progress
 DFW – depth first walker, prints pinode, inode, path, attrs, xattrs
 BFW – breadth first walker, prints pinode, inode, path, attrs, xattrs
 BFWI – breadth first walker to create GUFI index tree from source tree
 BFMI – walk Robinhood MySQL and list tree and/or create GUFI index tree
 BFTI – breadth first walker that summarizes a GUFI tree from a source path down, can

create treesummary index of that info
 BFQ – breadth first walker query that queries GUFI index tree

 Specify SQL for treesummary, directorysummary, and entries DBs
 BFFUSE – FUSE interface to run POSIX md tools on a GUFI search result
 Querydb – dumps treesummary, directorysummar, and optional entry databases given a

directory in GUFI as input
 Programs to update, incremental update (in progress):

 Lustre, GPFS, HPSS

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 28

Early Performance Indicators

 All tests performed on a mid 2014 Macbook (quad core + nvme SSD)
 No tree indexes used
 ~136k directories, mostly small directories, 10 1M entry dirs, 20 100K size dirs, and

10 20M size dirs
 ~250M files total represented
 Search of all files: 2m10s (~1.75M files/sec)
 Search of all files and dirs: 2m19s (~1.63 M entries/sec)
 Search of all files and dirs, but exclude some very large dirs: 1m18s
 Search of all files and dirs, but exclude all < 1000 file directories: 1m59s

 …on a laptop!

2018 Storage Developer Conference. Los Alamos National Laboratory LA-UR-18-28675 29

Learn more!
 https://github.com/mar-file-system/GUFI
 https://github.com/mar-file-system/marfs
 https://github.com/pftool/pftool
Open Source
BSD License
Partners Welcome

https://github.com/mar-file-system/GUFI
https://github.com/mar-file-system/marfs
https://github.com/pftool/pftool

	MarFS, Marchive, and GUFI – �Long Term Storage Strategies at LANL
	Storage @ LANL
	Storage @ LANL
	Storage @ LANL
	Why complicate matters?
	Why build our own file system?
	Enter MarFS
	MarFS in a nutshell
	Scalability at its core
	Metadata scaling stunt
	Sample Multi File
	Sample Packed File
	Multi-Component Repositories
	Data Layout
	File Format
	Lessons learned (so far)
	Ongoing work	
	So we have this MarFS thing…
	Enter Marchive
	Many layers of storage
	Enter GUFI
	Initial thoughts
	Prototype
	Draft DB Schemas
	Draft DB Schemas (continued)
	Draft DB Schemas (continued)
	Programs Included / In Progress
	Early Performance Indicators
	Learn more!

