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Introduction

 File-system aware applications

 E.g. partition editor, file system checker, defragmentation tool

 Operate directly on file system metadata structures

 Require detailed knowledge of file system format on disk

 Bypass VFS layer

 Essential for successful deployment of file system
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Problem

 Tools have to be developed from scratch for each file system

 Tools developed only by experts

 Bugs lead to crash, corruption, security vulnerability

 Example: bug 723343 in ntfsprogs

 NTFS stores the size of MFT record as either:

 # of clusters per record, if value > 0

 2|value|, if value < 0

 ntfsprogs misinterprets this field, corrupting NTFS when 

resizing partitions
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Root Cause

 File-system applications are difficult to write

 File system format complex and often poorly documented

 Require detailed knowledge of format

 Cannot be reused across file systems

 Need to handle file system corruption
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Goals

 Simplify development of file-system aware applications

 Reduce file-system specific code

 Enable code reuse across file systems

 Improve robustness of these applications

 Enable correct traversal of file system metadata

 Ensure type safe access to file system structures

 Helps detect corruption for both read and write

 Helps reduce error propagation, and further corruption
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Approach: Spiffy Framework

 File system developers specify the format of their file system

 Spiffy uses specification to generate parsing and serialization 

library 

 Developers use library to build robust file-system aware 

applications
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Specifying Format

 File system developers annotate metadata structures in 

header files of existing source code
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Generating Library

 Spiffy compiler processes annotated metadata structures

to generate library that provides a generic API for type-safe 

parsing, traversal and serialization of file system structures
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Building Applications

 Application developers use Spiffy library to build robust tools

that work across file systems
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Talk Outline

 Problem

 Hard to write robust file system applications

 Approach

 Spiffy Annotations

 Spiffy Library

 Spiffy Applications

 Evaluation

 Conclusion
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Need for Annotations

 Need complete specification of the file system format

 Allows type-safe parsing and updates of file system structures

 Challenge

 Data structure definitions in source files are incomplete

 bar_block_ptr is “probably” a pointer to type “bar_block”

 However, its hard to deduce this type information

struct foo {

__le32 size;

__le32 bar_block_ptr;

};
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Need for Annotations

 Solution

 Annotate structures to supply missing information

FSSTRUCT() foo {

__le32 size;

POINTER(..., type=bar_block)

__le32 bar_block_ptr;

};
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Need for Annotations
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Pointer Annotations
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Pointer Address Space

 Main challenge: File system pointers can store different types 

of logical addresses

 Need different mappings to obtain physical address

 Solution: Pointer annotations specify an address space that 

indicates how the address should be mapped to physical 

location

 Examples: Block and File address spaces

POINTER(aspc=block, type=bar_block)
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Block Address Space

 Block address is the block number in the file system
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ext4 journal

File Address Space

 File address is an index into the inode table for a file

 E.g. Ext4 journal is stored as a regular file  

 Regular file may be physically discontiguous

 Requires mapping logical blocks of the file to their physical locations

ext4 journal on physical disk

super

block

block group 

descriptor table
…block group 

descriptor

block addr

file addr
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Super Block

 Super block is the root of every file system tree

 Specified using FSSUPER annotation

 location specifies address of super block in byte offset

FSSUPER(location=1024) ext4_super_block 

{

__le32 s_log_block_size;

...

POINTER(aspc=file, 

type=ext4_journal)

__le32 s_journal_inum;

};

super 

block
ext4 journalfile addr.
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Super Block

 Super block is the root of every file system tree

 Specified using FSSUPER annotation

 location specifies address of super block in byte offset

FSSUPER(location=1024) ext4_super_block

{

__le32 s_log_block_size;

...

POINTER(aspc=file, 

type=ext4_journal)

__le32 s_journal_inum;

};

super 

block
ext4 journalfile addr.
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Super Block

 Super block is the root of every file system tree

 Specified using FSSUPER annotation

 location specifies address of super block in byte offset

super 

block
ext4 journalfile addr.

FSSUPER(location=1024) ext4_super_block 

{

__le32 s_log_block_size;

...

POINTER(aspc=file, 

type=ext4_journal)

__le32 s_journal_inum;

};
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Context-Sensitive Types

 A field may refer to different types of metadata

 Pointers in inode structure can point to directory or data blocks

 Supported by specifying when condition in pointer annotation

FSSTRUCT(...) ext4_inode {

__le16 i_mode;

…

POINTER(aspc=block, type=dir_block,

when=self.i_mode & S_IFDIR)

POINTER(aspc=block, type=data_block,

when=self.i_mode & S_IFREG)                 

__le32 i_block[EXT3_NDIR_BLOCKS];

…

};

inode

table

inode

(reg file)

inode

(directory)
…

dir

block
data

block



2018 Storage  Developer Conference. ©  University of Toronto.  All Rights Reserved. 23
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Context-Sensitive Types
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Missing Pointer

 Locations of some structures are implicit in the code

 E.g. Ext4 block group descriptor table is the next block 

following the super block

 Ext4 super block does not have a 

field that points to descriptor table

 Pointer required for file system 

traversal
missing pointer

super

block

block group 

descriptor table …block group 

descriptor

missing pointer field
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Implicit Pointer

 Solution: Implicit pointer annotation

 name creates a logical pointer field that can be dereferenced

 expr is a C expression that specifies how to calculate the field value

 Expression can reference other fields

in the structure

FSSUPER(...) ext4_super_block {

__le32 s_log_block_size;

...

POINTER(name=s_block_group_desc,

type=ext4_group_desc_table, aspc=block, 

expr=(self.s_log_block_size == 0) ? 2 : 1);

};

super

block

block group 

descriptor table …block group 

descriptor

s_block_group_desc
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Implicit Pointer

 Solution: Implicit pointer annotation

 name creates a logical pointer field that can be dereferenced

 expr is a C expression that specifies how to calculate the field value

 Expression can reference other fields

in the structure

FSSUPER(...) ext4_super_block {

__le32 s_log_block_size;

...

POINTER(name=s_block_group_desc,

type=ext4_group_desc_table, aspc=block, 

expr=(self.s_log_block_size == 0) ? 2 : 1);

};

super

block

block group 

descriptor table …block group 

descriptor

s_block_group_desc
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Vector Types

 Spiffy allows specifying vector types via VECTOR annotation

 A vector contains a sequence of elements of the same type

 The size of the vector can be specified using

1) number of elements

2) sentinel value

3) total vector size
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Vector Types

 Spiffy allows specifying vector types via VECTOR annotation

 A vector contains a sequence of elements of the same type

 The size of the vector can be specified using

1) number of elements

2) sentinel value

3) total vector size

VECTOR(name=inode_block, type=struct ext4_inode, 

count=BLOCK_SIZE/sb.s_inode_size);
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Vector Types

 Spiffy allows specifying vector types via VECTOR annotation

 A vector contains a sequence of elements of the same type

 The size of the vector can be specified using

1) number of elements

2) sentinel value

3) total vector size

VECTOR(name=dir_block, type=struct ext4_dir_entry, size=BLOCK_SIZE);

FSSTRUCT() directory_indirect_ptr {

POINTER(aspc=block, type=dir_block)

__le32 ind_block_nr;

};
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Vector Types

 Spiffy allows specifying vector types via VECTOR annotation

 A vector contains a sequence of elements of the same type

 The size of the vector can be specified using

1) number of elements

2) sentinel value

3) total vector size

VECTOR(name=dir_block, type=struct ext4_dir_entry, size=BLOCK_SIZE);

FSSTRUCT() directory_indirect_ptr {

POINTER(aspc=block, type=dir_block)

__le32 ind_block_nr;

};
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Vector Types

 Spiffy allows specifying vector types via VECTOR annotation

 A vector contains a sequence of elements of the same type

 The size of the vector can be specified using

1) number of elements

2) sentinel value

3) total vector size

VECTOR(name=dir_block, type=struct ext4_dir_entry, size=BLOCK_SIZE);

FSSTRUCT() directory_indirect_ptr {

POINTER(aspc=block, type=dir_block)

__le32 ind_block_nr;

};
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FSSUPER(…) ext4_super_block {

__le32 s_log_block_size;

__le16 s_magic;

…

CHECK(expr=self.s_log_block_size <= 6);

CHECK(expr=self.s_magic == 0xef53);

};

Check Annotations

int Ext4SuperBlock::parse(const char * & buf, unsigned & len) {

int ret; 

if ((ret = s_log_block_size.parse(buf, len)) < 0) return ret;

…

if (!(s_log_block_size <= 6)) return ERR_CORRUPT;

if (!(s_magic == 0xef53)) return ERR_CORRUPT;

return 0;

}

Generated Code for ext4_super_block
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FSSUPER(…) ext4_super_block {

__le32 s_log_block_size;

__le16 s_magic;

…

CHECK(expr=self.s_log_block_size <= 6);

CHECK(expr=self.s_magic == 0xef53);

};

Check Annotations

int Ext4SuperBlock::parse(const char * & buf, unsigned & len) {

int ret; 

if ((ret = s_log_block_size.parse(buf, len)) < 0) return ret;

…

if (!(s_log_block_size <= 6)) return ERR_CORRUPT;

if (!(s_magic == 0xef53)) return ERR_CORRUPT;

return 0;

}

Generated Code for ext4_super_block
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FSSUPER(…) ext4_super_block {

__le32 s_log_block_size;

__le16 s_magic;

…

CHECK(expr=self.s_log_block_size <= 6);

CHECK(expr=self.s_magic == 0xef53);

};

Check Annotations

int Ext4SuperBlock::parse(const char * & buf, unsigned & len) {

int ret; 

if ((ret = s_log_block_size.parse(buf, len)) < 0) return ret;

…

if (!(s_log_block_size <= 6)) return ERR_CORRUPT;

if (!(s_magic == 0xef53)) return ERR_CORRUPT;

return 0;

}

Generated Code for ext4_super_block
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Generating Spiffy Library

 C++ classes are generated for all annotated structures 

and their fields

 Enables type-safe parsing and serialization

 Allows introspection of type, size, name, and parents
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Evaluation: Annotation Effort

 Lines of code required to correctly annotate file systems

 Need to declare some structures

 E.g. Ext4 indirect block assumed to be an array of 4-byte pointers

 Changed some structures for clarity

 E.g. block pointers in Ext4 inode is an array of 15 pointers: first 12 

are direct pointers, last 3 are indirect pointers of different types

File System Line Count Annotated

Ext4 491 113

Btrfs 556 151

F2FS 462 127
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Building Applications

 Example: File System Free Space Tool

 Plots histogram of size of free extents

 Application requires knowledge of how file system tracks block allocation

 Manually

 Write code to traverse file system and access relevant metadata

 Often through trial-and-error

 Write code to process relevant metadata

 Spiffy framework

 Simplifies the traversal and helps make it more robust

 Application program focuses on processing relevant metadata
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int process_ext4(vector<Extent> & vec, Device & dev) {

/* ext4 super block is 1024 bytes away from start */

struct ext4_super_block * sb = dev.read(1024, SB_SIZE);

int blk_size = 1024 << sb->s_log_block_size;

dev.set_block_size(blk_size);

/* block group descriptors start at block 2 or 1 */

int bg_blknr = (sb->s_log_block_size == 0) 2 : 1;

int bg_ngrps = ceil(sb->s_blocks_count, sb->s_blocks_per_group);

int bg_nblks = ceil(bg_ngrps*sizeof(struct ext4_group_desc), blk_size);

/* read all of the block group descriptors into memory */

struct ext4_group_desc * gd = dev.read_block(bg_blknr, bg_nblks);

for (int i = 0; i < bg_ngrps; ++i) {

char * buf = dev.read_block(gd[i]->bg_block_bitmap);

int ret = process_block_bitmap(buf, vec);

…

}

…

}

Manually-Written Application

LOTS of boilerplate code to walk through the intermediate structures
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int process_ext4(vector<Extent> & vec, Device & dev) {

/* ext4 super block is 1024 bytes away from start */

struct ext4_super_block * sb = dev.read(1024, SB_SIZE);

int blk_size = 1024 << sb->s_log_block_size;

dev.set_block_size(blk_size);

/* block group descriptors start at block 2 or 1 */

int bg_blknr = (sb->s_log_block_size == 0) 2 : 1;

int bg_ngrps = ceil(sb->s_blocks_count, sb->s_blocks_per_group);

int bg_nblks = ceil(bg_ngrps*sizeof(struct ext4_group_desc), blk_size);

/* read all of the block group descriptors into memory */

struct ext4_group_desc * gd = dev.read_block(bg_blknr, bg_nblks);

for (int i = 0; i < bg_ngrps; ++i) {

char * buf = dev.read_block(gd[i]->bg_block_bitmap);

int ret = process_block_bitmap(buf, vec);

…

}

…

}

Manually-Written Application

Ideally, we would only have to write this function
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int process_ext4(vector<Extent> & vec, Device & dev) {

/* ext4 super block is 1024 bytes away from start */

struct ext4_super_block * sb = dev.read(1024, SB_SIZE);

int blk_size = 1024 << sb->s_log_block_size;

dev.set_block_size(blk_size);

/* block group descriptors start at block 2 or 1 */

int bg_blknr = (sb->s_log_block_size == 0) 2 : 1;

int bg_ngrps = ceil(sb->s_blocks_count, sb->s_blocks_per_group);

int bg_nblks = ceil(bg_ngrps*sizeof(struct ext4_group_desc), blk_size);

/* read all of the block group descriptors into memory */

struct ext4_group_desc * gd = dev.read_block(bg_blknr, bg_nblks);

for (int i = 0; i < bg_ngrps; ++i) {

char * buf = dev.read_block(gd[i]->bg_block_bitmap);

int ret = process_block_bitmap(buf, vec);

…

}

…

}

Manually-Written Application

No sanity checks! Value may be out-of-bound or 
invalid, which can cause crashes or garbage output
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Application Using Spiffy Library

int process_ext4(vector<Extent> & vec, Device & dev) {

1:  Ext4 ext4(dev);

2:  /* read super block into memory */

3:  Ext4::SuperBlock * sb = ext4.fetch_super();

4:  if (sb == nullptr) return -1;

5:  dev.set_block_size(1024 << sb->s_log_block_size);

6:  /* traverse file system and find/process all block bitmaps */

7:  return sb->process_by_type(BLOCK_BITMAP, 

process_block_bitmap, &vec);

}

Returns nullptr
if super block
is corrupted
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int process_ext4(vector<Extent> & vec, Device & dev) {

1:  Ext4 ext4(dev);

2:  /* read super block into memory */

3:  Ext4::SuperBlock * sb = ext4.fetch_super();

4:  if (sb == nullptr) return -1;

5:  dev.set_block_size(1024 << sb->s_log_block_size);

6:  /* traverse file system and find/process all block bitmaps */

7:  return sb->process_by_type(BLOCK_BITMAP, 

process_block_bitmap, &vec);

}

Application Using Spiffy Library

THAT’S IT
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int process_ext4(vector<Extent> & vec, Device & dev) {

1:  Ext4 ext4(dev);

2:  /* read super block into memory */

3:  Ext4::SuperBlock * sb = ext4.fetch_super();

4:  if (sb == nullptr) return -1;

5:  dev.set_block_size(1024 << sb->s_log_block_size);

6:  /* traverse file system and find/process all block bitmaps */

7:  return sb->process_by_type(BLOCK_BITMAP, 

process_block_bitmap, &vec);

}

Application Using Spiffy Library

 Advantages

 simplifies file system traversal, reduces need to know format details

 library parsing routines have automatically generated sanity checks
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Spiffy Application for Btrfs

int process_btrfs(vector<Extent> & vec, Device & dev) {

1:  Btrfs btrfs(dev);

2:  /* read super block into memory */

3:  Btrfs::SuperBlock * sb = btrfs.fetch_super();

4:  if (sb == nullptr) return -1;

5:  dev.set_block_size(sb->sectorsize);

6:  /* traverse file system and find/process all extent items */

7:  return sb->process_by_type(EXTENT_ITEM, 

process_extent_item, &vec);

}
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Spiffy Applications

Read-Only Read-Write

Offline

(Userspace)

• File System Free Space Tool

• File System Dump Tool

• Type-Specific File System 

Corruptor

• File System Conversion Tool

Online

(Kernel)

• File-System Aware Block 

Layer Cache

• Runtime File Systems 

Checker
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File System Dump Tool

 Helps debug file system 

implementation

 Parses all metadata and 

exports them in XML format

void main(void) {

Ext4IO io("/dev/sdb1");

Ext4 fs(io);

Container * sup = fs.fetch_super();

if (sup != nullptr) {

ev.visit(*sup);

sup->destroy();

}

}

EntVisitor ev;

PtrVisitor pv;

int EntVisitor::visit(Entity & e) {

cout << e.get_name() << endl;

return e.process_pointers(pv);

}

int PtrVisitor::visit(Entity & p) {

Container * tmp;

tmp = p.to_pointer()->fetch();

if (tmp != nullptr) {

ev.visit(*tmp);

tmp->destroy();

}

return 0;

}
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File System Dump Tool

 Helps debug file system 

implementation

 Parses all metadata and 

exports them in XML format

void main(void) {

Ext4IO io("/dev/sdb1");

Ext4 fs(io);

Container * sup = fs.fetch_super();

if (sup != nullptr) {

ev.visit(*sup);

sup->destroy();

}

}

EntVisitor ev;

PtrVisitor pv;

int EntVisitor::visit(Entity & e) {

cout << e.get_name() << endl;

return e.process_pointers(pv);

}

int PtrVisitor::visit(Entity & p) {

Container * tmp;

tmp = p.to_pointer()->fetch();

if (tmp != nullptr) {

ev.visit(*tmp);

tmp->destroy();

}

return 0;

}
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File System Dump Tool

 Helps debug file system 

implementation

 Parses all metadata and 

exports them in XML format

void main(void) {

Ext4IO io("/dev/sdb1");

Ext4 fs(io);

Container * sup = fs.fetch_super();

if (sup != nullptr) {

ev.visit(*sup);

sup->destroy();

}

}

EntVisitor ev;

PtrVisitor pv;

int EntVisitor::visit(Entity & e) {

cout << e.get_name() << endl;

return e.process_pointers(pv);

}

int PtrVisitor::visit(Entity & p) {

Container * tmp;

tmp = p.to_pointer()->fetch();

if (tmp != nullptr) {

ev.visit(*tmp);

tmp->destroy();

}

return 0;

}
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File System Dump Tool

 Helps debug file system 

implementation

 Parses all metadata and 

exports them in XML format
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Container * sup = fs.fetch_super();

if (sup != nullptr) {

ev.visit(*sup);

sup->destroy();

}

}

EntVisitor ev;

PtrVisitor pv;

int EntVisitor::visit(Entity & e) {

cout << e.get_name() << endl;

return e.process_pointers(pv);

}

int PtrVisitor::visit(Entity & p) {

Container * tmp;

tmp = p.to_pointer()->fetch();

if (tmp != nullptr) {

ev.visit(*tmp);

tmp->destroy();

}

return 0;

}
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File System Dump Tool

 Provides API to filter out fields and structures

 Helps reduce and declutter the output

 E.g. Ext4 dump tool does not export unallocated inode

 Works for all annotated file systems

 Generic Application Code: 482 LOC

 File-System Specific Code: 30 to 60 LOC each
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Type-Specific File System Corruptor

 Helps test robustness of file systems and their tools

 Finds and corrupts a field in a specified structure

 Generic Application Code: 455 LOC

 File-System Specific Code: < 30 LOC each

 Corruption Experiment

 Ran existing tools on corrupt file system image

 Discovered 1 crash bug in dumpe2fs (Ext4)

 Discovered 5 crash bugs in dump.f2fs (F2FS)

 None in our Spiffy dump tool on Ext4, Btrfs and F2FS
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File System Conversion Tool

 Converts from one file system to another

 In-place conversion, no secondary device needed

 Minimizes copying data blocks

 Currently, converts from Ext4 to F2FS

 Generic application code: 504 LOC

 Ext4 specific code (source file system): 218 LOC

 F2FS specific code (destination file system): 1760 LOC



2018 Storage  Developer Conference. ©  University of Toronto.  All Rights Reserved. 55

Evaluation: Ext4 to F2FS Converter

 Compare Spiffy converter versus copy-based converter

 Copy converter copies data to local disk, reformat, then copies back

 Converts 64GB file system with 16GB of data on SSD

 Copy converter 30~50 times slower
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File-system Aware Block Layer Cache

 Supports block caching policies that use file-system specific information

 Implemented at the block layer

 Requires no changes to the file system!

 Identifies and interprets blocks as they are read or written

 Identifies the types of blocks

 Interprets their contents to extract file-system specific information

 Block caching policies

 Cache file system metadata

 When a block is accessed, Spiffy helps determine whether block is data/metadata

 Cache small files, cache a specific user’s files

 When a block is accessed, Spiffy helps determine the file to which block belongs
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Runtime File System Checker

 Checks whether file system writes would cause file system 

inconsistency on disk

 Identifies and interprets blocks as they are read or written

 At commit time, compares old and new versions of modified blocks

 Generates logical changes to file system metadata

 Checks changes against file-system specific consistency rules

 Evaluation

 Ext4 manual differencing: 2099 lines of code

 Ext4 Spiffy differencing: 1059 lines of code
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Demo of Spiffy Applications

 Type-Specific File System Corruptor

 File System Dump Tool

 And more … (time permitting)
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Conclusion

 Spiffy framework

 Annotation language for specifying file system format

 Enables generating a library for traversing file system metadata

 Simplifies development of file-system aware applications

 Reduces file-system specific code

 Enables code reuse across file systems

 Enables writing robust applications

 Provides type-safe parsing and serialization of metadata

 Helps detect file system corruption
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Find Out More

 FAST 2018 Paper

 https://www.usenix.org/system/files/conference/fast18/fast18-sun.pdf

 GitHub repository

 https://github.com/jacksun007/spiffy

https://www.usenix.org/system/files/conference/fast18/fast18-sun.pdf
https://github.com/jacksun007/spiffy
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Applications
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Spiffy API (C++)

Base Class Member Functions Description

Spiffy File System Library

Entity int process_fields(Visitor & v) allows v to visit all fields of this object

int process_pointer(Visitor & v) allows v to visit all pointers of this object

int process_by_type(int t, 

Visitor & v)

allows v to visit all structures of type t that is 

reachable from this object

get_name(), get_size(), etc. allows for type introspection 

Container int save() serializes and persists the container

Pointer Container * fetch() retrieves pointed-to container from disk

FileSystem FileSystem(IO & io) instantiates a new file system object

Container * fetch_super() retrieves the super block from disk

Application Developer

Visitor virtual int visit(Entity & e)=0; visits an entity and possibly processes it


