
2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 1

Spiffy: Enabling File-System Aware Storage

Applications

Kuei (Jack) Sun

University of Toronto

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 2

Introduction

 File-system aware applications

 E.g. partition editor, file system checker, defragmentation tool

 Operate directly on file system metadata structures

 Require detailed knowledge of file system format on disk

 Bypass VFS layer

 Essential for successful deployment of file system

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 3

Problem

 Tools have to be developed from scratch for each file system

 Tools developed only by experts

 Bugs lead to crash, corruption, security vulnerability

 Example: bug 723343 in ntfsprogs

 NTFS stores the size of MFT record as either:

 # of clusters per record, if value > 0

 2|value|, if value < 0

 ntfsprogs misinterprets this field, corrupting NTFS when

resizing partitions

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 4

Root Cause

 File-system applications are difficult to write

 File system format complex and often poorly documented

 Require detailed knowledge of format

 Cannot be reused across file systems

 Need to handle file system corruption

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 5

Goals

 Simplify development of file-system aware applications

 Reduce file-system specific code

 Enable code reuse across file systems

 Improve robustness of these applications

 Enable correct traversal of file system metadata

 Ensure type safe access to file system structures

 Helps detect corruption for both read and write

 Helps reduce error propagation, and further corruption

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 6

Approach: Spiffy Framework

 File system developers specify the format of their file system

 Spiffy uses specification to generate parsing and serialization

library

 Developers use library to build robust file-system aware

applications

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 7

Specifying Format

 File system developers annotate metadata structures in

header files of existing source code

File System

Developer

File System

Metadata

Structures

Annotations

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 8

Generating Library

 Spiffy compiler processes annotated metadata structures

to generate library that provides a generic API for type-safe

parsing, traversal and serialization of file system structures

Spiffy

Compiler

Spiffy

Library

Spiffy

API

File System

Developer

File System

Metadata

Structures

Annotations

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 9

Building Applications

 Application developers use Spiffy library to build robust tools

that work across file systems

Generic

Application

File-System

Specific Logic

Application

Developer

Spiffy

Compiler

Spiffy

Library

Spiffy

API

File System

Developer

File System

Metadata

Structures

Annotations

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 10

Talk Outline

 Problem

 Hard to write robust file system applications

 Approach

 Spiffy Annotations

 Spiffy Library

 Spiffy Applications

 Evaluation

 Conclusion

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 11

Need for Annotations

 Need complete specification of the file system format

 Allows type-safe parsing and updates of file system structures

 Challenge

 Data structure definitions in source files are incomplete

 bar_block_ptr is “probably” a pointer to type “bar_block”

 However, its hard to deduce this type information

struct foo {

__le32 size;

__le32 bar_block_ptr;

};

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 12

Need for Annotations

 Solution

 Annotate structures to supply missing information

FSSTRUCT() foo {

__le32 size;

POINTER(..., type=bar_block)

__le32 bar_block_ptr;

};

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 13

Need for Annotations

 Solution

 Annotate structures to supply missing information

FSSTRUCT() foo {

__le32 size;

POINTER(..., type=bar_block)

__le32 bar_block_ptr;

};

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 14

Need for Annotations

 Solution

 Annotate structures to supply missing information

FSSTRUCT() foo {

__le32 size;

POINTER(..., type=bar_block)

__le32 bar_block_ptr;

};

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 15

Pointer Annotations

Ext4 File System

Metadata Tree

block

bitmap

super

block
ext4 journal

block group

descriptor table

inode

table

inode

(reg file)

inode

(directory)

…

…

dir

block

dir

indirect

block

dir

blocks

data

block

inode

bitmap

block group

descriptor

block group

descriptor

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 16

Pointer Address Space

 Main challenge: File system pointers can store different types

of logical addresses

 Need different mappings to obtain physical address

 Solution: Pointer annotations specify an address space that

indicates how the address should be mapped to physical

location

 Examples: Block and File address spaces

POINTER(aspc=block, type=bar_block)

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 17

Block Address Space

 Block address is the block number in the file system

block

bitmap

super

block
ext4 journal

inode

table

inode

(reg file)

inode

(directory)
… dir

indirect

block

inode

bitmap

block group

descriptor table

block addr

block addr block addr

block addr block addrblock addr

block group

descriptor

block group

descriptor
…

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 18

ext4 journal

File Address Space

 File address is an index into the inode table for a file

 E.g. Ext4 journal is stored as a regular file

 Regular file may be physically discontiguous

 Requires mapping logical blocks of the file to their physical locations

ext4 journal on physical disk

super

block

block group

descriptor table
…block group

descriptor

block addr

file addr

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 19

Super Block

 Super block is the root of every file system tree

 Specified using FSSUPER annotation

 location specifies address of super block in byte offset

FSSUPER(location=1024) ext4_super_block

{

__le32 s_log_block_size;

...

POINTER(aspc=file,

type=ext4_journal)

__le32 s_journal_inum;

};

super

block
ext4 journalfile addr.

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 20

Super Block

 Super block is the root of every file system tree

 Specified using FSSUPER annotation

 location specifies address of super block in byte offset

FSSUPER(location=1024) ext4_super_block

{

__le32 s_log_block_size;

...

POINTER(aspc=file,

type=ext4_journal)

__le32 s_journal_inum;

};

super

block
ext4 journalfile addr.

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 21

Super Block

 Super block is the root of every file system tree

 Specified using FSSUPER annotation

 location specifies address of super block in byte offset

super

block
ext4 journalfile addr.

FSSUPER(location=1024) ext4_super_block

{

__le32 s_log_block_size;

...

POINTER(aspc=file,

type=ext4_journal)

__le32 s_journal_inum;

};

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 22

Context-Sensitive Types

 A field may refer to different types of metadata

 Pointers in inode structure can point to directory or data blocks

 Supported by specifying when condition in pointer annotation

FSSTRUCT(...) ext4_inode {

__le16 i_mode;

…

POINTER(aspc=block, type=dir_block,

when=self.i_mode & S_IFDIR)

POINTER(aspc=block, type=data_block,

when=self.i_mode & S_IFREG)

__le32 i_block[EXT3_NDIR_BLOCKS];

…

};

inode

table

inode

(reg file)

inode

(directory)
…

dir

block
data

block

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 23

Context-Sensitive Types

 A field may refer to different types of metadata

 Pointers in inode structure can point to directory or data blocks

 Supported by specifying when condition in pointer annotation

FSSTRUCT(...) ext4_inode {

__le16 i_mode;

…

POINTER(aspc=block, type=dir_block,

when=self.i_mode & S_IFDIR)

POINTER(aspc=block, type=data_block,

when=self.i_mode & S_IFREG)

__le32 i_block[EXT3_NDIR_BLOCKS];

…

};

inode

table

inode

(reg file)

inode

(directory)
…

dir

block
data

block

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 24

Context-Sensitive Types

 A field may refer to different types of metadata

 Pointers in inode structure can point to directory or data blocks

 Supported by specifying when condition in pointer annotation

FSSTRUCT(...) ext4_inode {

__le16 i_mode;

…

POINTER(aspc=block, type=dir_block,

when=self.i_mode & S_IFDIR)

POINTER(aspc=block, type=data_block,

when=self.i_mode & S_IFREG)

__le32 i_block[EXT3_NDIR_BLOCKS];

…

};

inode

table

inode

(reg file)

inode

(directory)
…

dir

block
data

block

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 25

Context-Sensitive Types

 A field may refer to different types of metadata

 Pointers in inode structure can point to directory or data blocks

 Supported by specifying when condition in pointer annotation

FSSTRUCT(...) ext4_inode {

__le16 i_mode;

…

POINTER(aspc=block, type=dir_block,

when=self.i_mode & S_IFDIR)

POINTER(aspc=block, type=data_block,

when=self.i_mode & S_IFREG)

__le32 i_block[EXT3_NDIR_BLOCKS];

…

};

inode

table

inode

(reg file)

inode

(directory)
…

dir

block
data

block

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 26

Missing Pointer

 Locations of some structures are implicit in the code

 E.g. Ext4 block group descriptor table is the next block

following the super block

 Ext4 super block does not have a

field that points to descriptor table

 Pointer required for file system

traversal
missing pointer

super

block

block group

descriptor table …block group

descriptor

missing pointer field

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 27

Implicit Pointer

 Solution: Implicit pointer annotation

 name creates a logical pointer field that can be dereferenced

 expr is a C expression that specifies how to calculate the field value

 Expression can reference other fields

in the structure

FSSUPER(...) ext4_super_block {

__le32 s_log_block_size;

...

POINTER(name=s_block_group_desc,

type=ext4_group_desc_table, aspc=block,

expr=(self.s_log_block_size == 0) ? 2 : 1);

};

super

block

block group

descriptor table …block group

descriptor

s_block_group_desc

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 28

Implicit Pointer

 Solution: Implicit pointer annotation

 name creates a logical pointer field that can be dereferenced

 expr is a C expression that specifies how to calculate the field value

 Expression can reference other fields

in the structure

FSSUPER(...) ext4_super_block {

__le32 s_log_block_size;

...

POINTER(name=s_block_group_desc,

type=ext4_group_desc_table, aspc=block,

expr=(self.s_log_block_size == 0) ? 2 : 1);

};

super

block

block group

descriptor table …block group

descriptor

s_block_group_desc

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 29

Vector Types

 Spiffy allows specifying vector types via VECTOR annotation

 A vector contains a sequence of elements of the same type

 The size of the vector can be specified using

1) number of elements

2) sentinel value

3) total vector size

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 30

Vector Types

 Spiffy allows specifying vector types via VECTOR annotation

 A vector contains a sequence of elements of the same type

 The size of the vector can be specified using

1) number of elements

2) sentinel value

3) total vector size

VECTOR(name=inode_block, type=struct ext4_inode,

count=BLOCK_SIZE/sb.s_inode_size);

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 31

Vector Types

 Spiffy allows specifying vector types via VECTOR annotation

 A vector contains a sequence of elements of the same type

 The size of the vector can be specified using

1) number of elements

2) sentinel value

3) total vector size

VECTOR(name=dir_block, type=struct ext4_dir_entry, size=BLOCK_SIZE);

FSSTRUCT() directory_indirect_ptr {

POINTER(aspc=block, type=dir_block)

__le32 ind_block_nr;

};

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 32

Vector Types

 Spiffy allows specifying vector types via VECTOR annotation

 A vector contains a sequence of elements of the same type

 The size of the vector can be specified using

1) number of elements

2) sentinel value

3) total vector size

VECTOR(name=dir_block, type=struct ext4_dir_entry, size=BLOCK_SIZE);

FSSTRUCT() directory_indirect_ptr {

POINTER(aspc=block, type=dir_block)

__le32 ind_block_nr;

};

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 33

Vector Types

 Spiffy allows specifying vector types via VECTOR annotation

 A vector contains a sequence of elements of the same type

 The size of the vector can be specified using

1) number of elements

2) sentinel value

3) total vector size

VECTOR(name=dir_block, type=struct ext4_dir_entry, size=BLOCK_SIZE);

FSSTRUCT() directory_indirect_ptr {

POINTER(aspc=block, type=dir_block)

__le32 ind_block_nr;

};

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 34

FSSUPER(…) ext4_super_block {

__le32 s_log_block_size;

__le16 s_magic;

…

CHECK(expr=self.s_log_block_size <= 6);

CHECK(expr=self.s_magic == 0xef53);

};

Check Annotations

int Ext4SuperBlock::parse(const char * & buf, unsigned & len) {

int ret;

if ((ret = s_log_block_size.parse(buf, len)) < 0) return ret;

…

if (!(s_log_block_size <= 6)) return ERR_CORRUPT;

if (!(s_magic == 0xef53)) return ERR_CORRUPT;

return 0;

}

Generated Code for ext4_super_block

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 35

FSSUPER(…) ext4_super_block {

__le32 s_log_block_size;

__le16 s_magic;

…

CHECK(expr=self.s_log_block_size <= 6);

CHECK(expr=self.s_magic == 0xef53);

};

Check Annotations

int Ext4SuperBlock::parse(const char * & buf, unsigned & len) {

int ret;

if ((ret = s_log_block_size.parse(buf, len)) < 0) return ret;

…

if (!(s_log_block_size <= 6)) return ERR_CORRUPT;

if (!(s_magic == 0xef53)) return ERR_CORRUPT;

return 0;

}

Generated Code for ext4_super_block

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 36

FSSUPER(…) ext4_super_block {

__le32 s_log_block_size;

__le16 s_magic;

…

CHECK(expr=self.s_log_block_size <= 6);

CHECK(expr=self.s_magic == 0xef53);

};

Check Annotations

int Ext4SuperBlock::parse(const char * & buf, unsigned & len) {

int ret;

if ((ret = s_log_block_size.parse(buf, len)) < 0) return ret;

…

if (!(s_log_block_size <= 6)) return ERR_CORRUPT;

if (!(s_magic == 0xef53)) return ERR_CORRUPT;

return 0;

}

Generated Code for ext4_super_block

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 37

Generating Spiffy Library

 C++ classes are generated for all annotated structures

and their fields

 Enables type-safe parsing and serialization

 Allows introspection of type, size, name, and parents

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 38

Evaluation: Annotation Effort

 Lines of code required to correctly annotate file systems

 Need to declare some structures

 E.g. Ext4 indirect block assumed to be an array of 4-byte pointers

 Changed some structures for clarity

 E.g. block pointers in Ext4 inode is an array of 15 pointers: first 12

are direct pointers, last 3 are indirect pointers of different types

File System Line Count Annotated

Ext4 491 113

Btrfs 556 151

F2FS 462 127

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 39

Building Applications

 Example: File System Free Space Tool

 Plots histogram of size of free extents

 Application requires knowledge of how file system tracks block allocation

 Manually

 Write code to traverse file system and access relevant metadata

 Often through trial-and-error

 Write code to process relevant metadata

 Spiffy framework

 Simplifies the traversal and helps make it more robust

 Application program focuses on processing relevant metadata

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 40

int process_ext4(vector<Extent> & vec, Device & dev) {

/* ext4 super block is 1024 bytes away from start */

struct ext4_super_block * sb = dev.read(1024, SB_SIZE);

int blk_size = 1024 << sb->s_log_block_size;

dev.set_block_size(blk_size);

/* block group descriptors start at block 2 or 1 */

int bg_blknr = (sb->s_log_block_size == 0) 2 : 1;

int bg_ngrps = ceil(sb->s_blocks_count, sb->s_blocks_per_group);

int bg_nblks = ceil(bg_ngrps*sizeof(struct ext4_group_desc), blk_size);

/* read all of the block group descriptors into memory */

struct ext4_group_desc * gd = dev.read_block(bg_blknr, bg_nblks);

for (int i = 0; i < bg_ngrps; ++i) {

char * buf = dev.read_block(gd[i]->bg_block_bitmap);

int ret = process_block_bitmap(buf, vec);

…

}

…

}

Manually-Written Application

LOTS of boilerplate code to walk through the intermediate structures

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 41

int process_ext4(vector<Extent> & vec, Device & dev) {

/* ext4 super block is 1024 bytes away from start */

struct ext4_super_block * sb = dev.read(1024, SB_SIZE);

int blk_size = 1024 << sb->s_log_block_size;

dev.set_block_size(blk_size);

/* block group descriptors start at block 2 or 1 */

int bg_blknr = (sb->s_log_block_size == 0) 2 : 1;

int bg_ngrps = ceil(sb->s_blocks_count, sb->s_blocks_per_group);

int bg_nblks = ceil(bg_ngrps*sizeof(struct ext4_group_desc), blk_size);

/* read all of the block group descriptors into memory */

struct ext4_group_desc * gd = dev.read_block(bg_blknr, bg_nblks);

for (int i = 0; i < bg_ngrps; ++i) {

char * buf = dev.read_block(gd[i]->bg_block_bitmap);

int ret = process_block_bitmap(buf, vec);

…

}

…

}

Manually-Written Application

Ideally, we would only have to write this function

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 42

int process_ext4(vector<Extent> & vec, Device & dev) {

/* ext4 super block is 1024 bytes away from start */

struct ext4_super_block * sb = dev.read(1024, SB_SIZE);

int blk_size = 1024 << sb->s_log_block_size;

dev.set_block_size(blk_size);

/* block group descriptors start at block 2 or 1 */

int bg_blknr = (sb->s_log_block_size == 0) 2 : 1;

int bg_ngrps = ceil(sb->s_blocks_count, sb->s_blocks_per_group);

int bg_nblks = ceil(bg_ngrps*sizeof(struct ext4_group_desc), blk_size);

/* read all of the block group descriptors into memory */

struct ext4_group_desc * gd = dev.read_block(bg_blknr, bg_nblks);

for (int i = 0; i < bg_ngrps; ++i) {

char * buf = dev.read_block(gd[i]->bg_block_bitmap);

int ret = process_block_bitmap(buf, vec);

…

}

…

}

Manually-Written Application

No sanity checks! Value may be out-of-bound or
invalid, which can cause crashes or garbage output

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 43

Application Using Spiffy Library

int process_ext4(vector<Extent> & vec, Device & dev) {

1: Ext4 ext4(dev);

2: /* read super block into memory */

3: Ext4::SuperBlock * sb = ext4.fetch_super();

4: if (sb == nullptr) return -1;

5: dev.set_block_size(1024 << sb->s_log_block_size);

6: /* traverse file system and find/process all block bitmaps */

7: return sb->process_by_type(BLOCK_BITMAP,

process_block_bitmap, &vec);

}

Returns nullptr
if super block
is corrupted

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 44

int process_ext4(vector<Extent> & vec, Device & dev) {

1: Ext4 ext4(dev);

2: /* read super block into memory */

3: Ext4::SuperBlock * sb = ext4.fetch_super();

4: if (sb == nullptr) return -1;

5: dev.set_block_size(1024 << sb->s_log_block_size);

6: /* traverse file system and find/process all block bitmaps */

7: return sb->process_by_type(BLOCK_BITMAP,

process_block_bitmap, &vec);

}

Application Using Spiffy Library

THAT’S IT

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 45

int process_ext4(vector<Extent> & vec, Device & dev) {

1: Ext4 ext4(dev);

2: /* read super block into memory */

3: Ext4::SuperBlock * sb = ext4.fetch_super();

4: if (sb == nullptr) return -1;

5: dev.set_block_size(1024 << sb->s_log_block_size);

6: /* traverse file system and find/process all block bitmaps */

7: return sb->process_by_type(BLOCK_BITMAP,

process_block_bitmap, &vec);

}

Application Using Spiffy Library

 Advantages

 simplifies file system traversal, reduces need to know format details

 library parsing routines have automatically generated sanity checks

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 46

Spiffy Application for Btrfs

int process_btrfs(vector<Extent> & vec, Device & dev) {

1: Btrfs btrfs(dev);

2: /* read super block into memory */

3: Btrfs::SuperBlock * sb = btrfs.fetch_super();

4: if (sb == nullptr) return -1;

5: dev.set_block_size(sb->sectorsize);

6: /* traverse file system and find/process all extent items */

7: return sb->process_by_type(EXTENT_ITEM,

process_extent_item, &vec);

}

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 47

Spiffy Applications

Read-Only Read-Write

Offline

(Userspace)

• File System Free Space Tool

• File System Dump Tool

• Type-Specific File System

Corruptor

• File System Conversion Tool

Online

(Kernel)

• File-System Aware Block

Layer Cache

• Runtime File Systems

Checker

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 48

File System Dump Tool

 Helps debug file system

implementation

 Parses all metadata and

exports them in XML format

void main(void) {

Ext4IO io("/dev/sdb1");

Ext4 fs(io);

Container * sup = fs.fetch_super();

if (sup != nullptr) {

ev.visit(*sup);

sup->destroy();

}

}

EntVisitor ev;

PtrVisitor pv;

int EntVisitor::visit(Entity & e) {

cout << e.get_name() << endl;

return e.process_pointers(pv);

}

int PtrVisitor::visit(Entity & p) {

Container * tmp;

tmp = p.to_pointer()->fetch();

if (tmp != nullptr) {

ev.visit(*tmp);

tmp->destroy();

}

return 0;

}

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 49

File System Dump Tool

 Helps debug file system

implementation

 Parses all metadata and

exports them in XML format

void main(void) {

Ext4IO io("/dev/sdb1");

Ext4 fs(io);

Container * sup = fs.fetch_super();

if (sup != nullptr) {

ev.visit(*sup);

sup->destroy();

}

}

EntVisitor ev;

PtrVisitor pv;

int EntVisitor::visit(Entity & e) {

cout << e.get_name() << endl;

return e.process_pointers(pv);

}

int PtrVisitor::visit(Entity & p) {

Container * tmp;

tmp = p.to_pointer()->fetch();

if (tmp != nullptr) {

ev.visit(*tmp);

tmp->destroy();

}

return 0;

}

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 50

File System Dump Tool

 Helps debug file system

implementation

 Parses all metadata and

exports them in XML format

void main(void) {

Ext4IO io("/dev/sdb1");

Ext4 fs(io);

Container * sup = fs.fetch_super();

if (sup != nullptr) {

ev.visit(*sup);

sup->destroy();

}

}

EntVisitor ev;

PtrVisitor pv;

int EntVisitor::visit(Entity & e) {

cout << e.get_name() << endl;

return e.process_pointers(pv);

}

int PtrVisitor::visit(Entity & p) {

Container * tmp;

tmp = p.to_pointer()->fetch();

if (tmp != nullptr) {

ev.visit(*tmp);

tmp->destroy();

}

return 0;

}

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 51

File System Dump Tool

 Helps debug file system

implementation

 Parses all metadata and

exports them in XML format

void main(void) {

Ext4IO io("/dev/sdb1");

Ext4 fs(io);

Container * sup = fs.fetch_super();

if (sup != nullptr) {

ev.visit(*sup);

sup->destroy();

}

}

EntVisitor ev;

PtrVisitor pv;

int EntVisitor::visit(Entity & e) {

cout << e.get_name() << endl;

return e.process_pointers(pv);

}

int PtrVisitor::visit(Entity & p) {

Container * tmp;

tmp = p.to_pointer()->fetch();

if (tmp != nullptr) {

ev.visit(*tmp);

tmp->destroy();

}

return 0;

}

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 52

File System Dump Tool

 Provides API to filter out fields and structures

 Helps reduce and declutter the output

 E.g. Ext4 dump tool does not export unallocated inode

 Works for all annotated file systems

 Generic Application Code: 482 LOC

 File-System Specific Code: 30 to 60 LOC each

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 53

Type-Specific File System Corruptor

 Helps test robustness of file systems and their tools

 Finds and corrupts a field in a specified structure

 Generic Application Code: 455 LOC

 File-System Specific Code: < 30 LOC each

 Corruption Experiment

 Ran existing tools on corrupt file system image

 Discovered 1 crash bug in dumpe2fs (Ext4)

 Discovered 5 crash bugs in dump.f2fs (F2FS)

 None in our Spiffy dump tool on Ext4, Btrfs and F2FS

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 54

File System Conversion Tool

 Converts from one file system to another

 In-place conversion, no secondary device needed

 Minimizes copying data blocks

 Currently, converts from Ext4 to F2FS

 Generic application code: 504 LOC

 Ext4 specific code (source file system): 218 LOC

 F2FS specific code (destination file system): 1760 LOC

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 55

Evaluation: Ext4 to F2FS Converter

 Compare Spiffy converter versus copy-based converter

 Copy converter copies data to local disk, reformat, then copies back

 Converts 64GB file system with 16GB of data on SSD

 Copy converter 30~50 times slower

1

4

16

64

256

20000 5000 1000 100

s
e
c
o
n
d
s

of files

Copy
Converter

Spiffy
Converter

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 56

File-system Aware Block Layer Cache

 Supports block caching policies that use file-system specific information

 Implemented at the block layer

 Requires no changes to the file system!

 Identifies and interprets blocks as they are read or written

 Identifies the types of blocks

 Interprets their contents to extract file-system specific information

 Block caching policies

 Cache file system metadata

 When a block is accessed, Spiffy helps determine whether block is data/metadata

 Cache small files, cache a specific user’s files

 When a block is accessed, Spiffy helps determine the file to which block belongs

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 57

Runtime File System Checker

 Checks whether file system writes would cause file system

inconsistency on disk

 Identifies and interprets blocks as they are read or written

 At commit time, compares old and new versions of modified blocks

 Generates logical changes to file system metadata

 Checks changes against file-system specific consistency rules

 Evaluation

 Ext4 manual differencing: 2099 lines of code

 Ext4 Spiffy differencing: 1059 lines of code

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 58

Demo of Spiffy Applications

 Type-Specific File System Corruptor

 File System Dump Tool

 And more … (time permitting)

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 59

Conclusion

 Spiffy framework

 Annotation language for specifying file system format

 Enables generating a library for traversing file system metadata

 Simplifies development of file-system aware applications

 Reduces file-system specific code

 Enables code reuse across file systems

 Enables writing robust applications

 Provides type-safe parsing and serialization of metadata

 Helps detect file system corruption

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 60

Find Out More

 FAST 2018 Paper

 https://www.usenix.org/system/files/conference/fast18/fast18-sun.pdf

 GitHub repository

 https://github.com/jacksun007/spiffy

https://www.usenix.org/system/files/conference/fast18/fast18-sun.pdf
https://github.com/jacksun007/spiffy

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 61

Spiffy: Enabling File-System Aware Storage

Applications

Kuei (Jack) Sun

University of Toronto

2018 Storage Developer Conference. © University of Toronto. All Rights Reserved. 62

Spiffy API (C++)

Base Class Member Functions Description

Spiffy File System Library

Entity int process_fields(Visitor & v) allows v to visit all fields of this object

int process_pointer(Visitor & v) allows v to visit all pointers of this object

int process_by_type(int t,

Visitor & v)

allows v to visit all structures of type t that is

reachable from this object

get_name(), get_size(), etc. allows for type introspection

Container int save() serializes and persists the container

Pointer Container * fetch() retrieves pointed-to container from disk

FileSystem FileSystem(IO & io) instantiates a new file system object

Container * fetch_super() retrieves the super block from disk

Application Developer

Visitor virtual int visit(Entity & e)=0; visits an entity and possibly processes it

