

www.storagedeveloper.org

Thinking Fast & Slow: Intuition, Reasoning and Emerging Memory

Dave Eggleston
Intuitive Cognition Consulting

Abstract

- Our human brain can be modeled as two distinctly different systems: a real time <u>intuition</u> system, and a background <u>reasoning</u> system.
- As we move into the AI compute era, Emerging Memory technologies play an increasingly important role in overcoming the <u>limitations of DRAM and NAND</u>.
- The commercialization of <u>Emerging Memory</u> will therefore accelerate our realization of powerful AI systems.

"A groundbreaking tour of the mind, and explains the two systems that drive the way we think."

"System 1 is fast, intuitive, and emotional; System 2 is slower, more deliberative, and more logical."

Daniel Kahneman is professor emeritus of psychology and public affairs at Princeton University.

WINNER OF THE NOBEL PRIZE IN ECONOMICS

$17 \times 24 = ?$

 $17 \times 24 = ?$

Intuition

REASONING

Intuition

System 1

- ☐ Lightning fast
- Automatic
- Real time
- Effortless
- Approximate

Edge

REASONING

SYSTEM 2

- Slow
- ☐ Interrupt driven
- Background
- ☐ Energy inefficient
- Precise

DATACENTER

Edge

Non-von Neumann architecture

Intuition

DATACENTER

VON NEUMANN ARCHITECTURE

REASONING

Edge

Store Dr. Moda for now; we'll come back to discuss Edge & Intuition

■ Non-von Neumann architecture

Intuition

DATACENTER

VON NEUMANN ARCHITECTURE

REASONING

REASONING

□ Once upon a time, long ago...

REASONING

■ And for a while we were happy! ② ② ②

Moore's Law is slowing – but still need low cost bits

Need cost-effective emerging memory to fill this gap

Trajectory for DRAM prices for the next 5 years uncertain

Moore's Law is slowing – but still need low cost bits

DRAM costs too much!

- Need cost-effective emerging memory to fill this gap
 - Trajectory for DRAM prices for the next 5 years uncertain

The Latency Spectrum and Gaps ~ 2015

Source: Mark Webb, MKW Ventures Consulting, FMS 2018

The Latency Spectrum and Gaps ~ 2015

Source: Mark Webb, MKW Ventures Consulting, FMS 2018

More Like Memory More Like Storage NAND is too slow! SRAM SLC to TLC 100ns Ins I Ons lus 10us 100us **Ims** 10_{ms} 100ms Is Increasing Density Increasing Cost

Limitations

Emerging Memory Targets

Emerging Memory Targets

Does such an Emerging Memory even exist?

Cost 1/3rd DRAM

Latency Read <1µs

Switching Mechanisms

Source: M. Jurczak, imec, ISSCC 2015 Memory Forum

Switching Mechanisms

Source: M. Jurczak, imec, ISSCC 2015 Memory Forum

(Too) many switching mechanisms!

Classifying the What

WHO is doing what?

ST-MRAM

Standalone

Embedded

PCM (3DXP)

ReRAM

SONY

Panasonic

Let's focus on the two shipping technologies!

SD®

2018 Storage Developer Conference. © Intuitive Cognition Consulting All Rights Reserved.

WHO is doing what?

SAMSUNG

Standalone

Embedded

Does such an Emerging Memory even exist?

PCM (3DXP)

ST-MRAM

Uh oh...

That's not good.

A Word to the Wise: Replacements

- There are <u>no</u> 1:1 memory replacements.
- Stop. looking. for. Them.
- Moving from DRAM+NAND world into one with <u>Combinations</u> of memory.

Let's use memory combinations!

PCM (3DXP)

ST-MRAM

FMS18: Intel Optane DIMM (3DXP on DRAM bus)

Source: Mark W. Henderson, Intel, FMS 2018

Now shipping samples broad developer engagement

FMS18: Intel Optane DIMM (3DXP on DRAM bus)

Source: Mark W. Henderson, Intel, FMS 2018

- Arch, software, hardware total effort
- Reduces Optane read latency to a few µs
- DRAM operates as "near memory",Optane operates as "far memory"

Intel controlled

FMS18: IBM Flash Core Module (MRAM+NAND)

Introducing The IBM FlashCore Module

IBM FlashCore™ technology delivers key differentiators

- Built in, performance neutral hardware compression and encryption
- Using 64 layer 3DTLC NAND
- Enterprise data reliability
- Cognitive Algorithms for **Wear Levelling**, **Health binning**, **Heat segregation** and media management
- Intelligent media management that keeps settings ideal to keep performance consistent.
- Endurance without latency penalty
- FIPS 140 certification

Source: Brent Yardley, IBM, FMS 2018

The Latency Spectrum and Gaps ~ Now

Source: Mark Webb, MKW Ventures Consulting, FMS 2018

The Latency Spectrum and Gaps ~ Now

Source: Mark Webb, MKW Ventures Consulting, FMS 2018

Several memory combinations reduce latency!

FMS18: Toshiba XL-Flash (Low Latency SSD)

XL-FLASH™ from Toshiba Memory; it's COMING! Toshiba Memory's BiCS FLASH™ based Low Latency SLC device -1/10 Read latency of TLC device -Based on proven and scalable Flash Technology Better "scalability" compared to new-material NVM type memory Enable optimization for various architectures (SLC/MLC, # of planes) Good for random IOPS and better QoS at shallow QD in an SSD XL-FLASH™ Conventional WI TOSHIBA

Source: Jeff Oshima, Toshiba, FMS 2018

- 10x reduced latency vs. TLC
- ☐ Still not 1us ⊗
- For low latency SSDs, attached to compute nodes
- Samsung Z-NAND, IntelOptane SSDs are competitors

FMS18: JEDEC NVDIMM-P

Source: Bill Gervasi, Nantero, FMS 2018

- Emerging memory and DRAM on the same DDR bus
- Open standard
- Non-deterministic behavior allowed
- Will compete with Intel Optane DIMMs
- Backed by all major memory companies

Summary: Your 2018 SSD/DIMM Watch List

- Everspin MRAM in low latency SSDs
- Intel 3DXP in lower cost server Optane DIMMs
- Toshiba XL NAND in lower latency SSDs
- □ JEDEC NVDIMM-P in open standard DIMMs

Edge

Non-von Neumann architecture

Intuition

DATACENTER

Let's talk about Intuition at the Edge now!

VON NEUMANN ARCHITECTURE

REASONING

Edge

- Non-von Neumann architecture
 - Intuition

- Intuition system in the human brains use<20 watts of power
- Using von-Neumann architecture for Intuition >20 Gigawatts!
- Highly networked, local compute nodes
- Trained neural nets (NN) perform lightning fast intuition
- Embedded Emerging Memory used to hold weights inside NN
- Sum the weights using analog combine
- Most efficient implementation is analog memory (6+ levels per cell)
- Doesn't require 7nm/5nm process!

Hot Chips 2018: Edge Intuition SoC

Mythic Mixed-Signal Computing

MYTHIC

Source: Dave Fick, Mythic, Hot Chips 2018

 Mythic currently uses embedded NOR
 Flash in analog mode to hold weights

Hot Chips 2018: Edge Intuition SoC

Mythic Mixed-Signal Computing

Single Tile

Tiles
Connected in a Grid

Example DNN Mapping (Post-Silicon)

Source: Dave Fick, Mythic, Hot Chips 2018

Lightning fast, low power, trained NN, analog memory

 Mythic currently uses embedded NOR
 Flash in analog mode to hold weights

FMS18: Future Edge Intuition SoCs use ReRAM?

Image Capture

Source: Hagop Nazarian, Crossbar, FMS 2018

Simultaneous Processingwith Deterministic Performance

- Parallel comparison against all identities
- If no match, new identity created (learning)
- Classification performed in one cycle independent of number of identities

FMS18: Future Edge Intuition SoCs use ReRAM?

Embedded ReRAM as analog memory in NN

Simultaneous Processing with Deterministic Performance

- Parallel comparison against all identities
- If no match, new identity created (learning)
- Classification performed in one cycle independent of number of identities

Why do I care? What is Emerging Memory enabling for AI?

Edge

- Analog memory in NN
- Lightning fast intuition at low power

DATACENTER

- TBs of memory
- Better reasoning, based on more data

Why do I care? What is Emerging Memory enabling for AI?

Edge

DATACENTER

Emerging Memory accelerates Al!

Lightning fast intuition at low power

Faster reasoning, based on more data

Take-away points:

- Your brain has two distinct systems
- Reasoning system needs <u>reduced latency and cost</u>
- ☐ There are NO 1:1 memory replacements
- Emerging memory combos with NAND and DRAM
- Intuition system needs <u>new architecture</u> and low power
- Emerging memory utilized as <u>analog weight</u> in neural nets
- Emerging memory <u>accelerates Al</u> systems

Register NOW for SNIA 2019 PM Summit!

https://www.snia.org/events/persistent-memorysummit/persistent-memory-summit-2019-registration

Dave Eggleston
Intuitive Cognition Consulting
Technology & Business Strategy

Email: dave@in-cog.com

Twitter: @NVM_DaveE

LinkedIn:

linkedin.com/in/deggleston/

Talk Outline

- 1. Demonstrate the human brain has two distinct systems
- 2. Discuss the best fit compute architecture to model each Al system
- 3. Articulate how DRAM and NAND are applied to the compute architectures
- 4. Identify the key limitations of DRAM and NAND
- 5. Present and classify some Emerging Memory alternatives
- 6. Discuss the Emerging Memory system enhancements
- 7. Identify who is doing what (by when) in the Emerging Memory landscape
- 8. Articulate the unique challenges in realizing an Al intuition system
- 9. Propose how Emerging Memory may solve some intuition problems
- 10. Point to the future of AI systems based on Emerging Memory

