
2018 Storage Developer Conference. © Eideticom. All Rights Reserved. 1

FPGA Accelerator Disaggregation Using
NVMe-over-Fabrics

Sean Gibb, VP Software
Stephen Bates, CTO

2018 Storage Developer Conference. © Eideticom. All Rights Reserved. 2

Acceleration

Host
CPU

NVMe
SSD

NVMe
SSD HDD RDMA

NIC

NoLoad
Accel.
Card

PCIe Bus

TM

 Storage I/O Bandwidth
rapidly increasing

 Storage workloads
taxing on host CPU

 FPGAs provide a
compelling solution for
storage workloads

 NoLoad = NVMe
Offload

2018 Storage Developer Conference. © Eideticom. All Rights Reserved. 3

NoLoad Accelerator

COTS PCIe FPGA Card

NoLoad Bitfiles

U.2 FPGA Card
Cloud Servers i.e.

Amazon F1

2018 Storage Developer Conference. © Eideticom. All Rights Reserved. 4

Why NVMe?

 Accelerators require:
 Low latency
 High throughput
 Low CPU overhead
 Multicore awareness
 QoS awareness

 Accelerators require:
 Low latency
 High throughput
 Low CPU overhead
 Multicore awareness
 QoS awareness

Why develop and maintain a driver when NVMe capabilities align so well with accelerator
needs and you can have world-class driver writers working on your driver? Real question
is “Why not NVMe?”

2018 Storage Developer Conference. © Eideticom. All Rights Reserved. 5

Accelerator and Controller Architecture

NoLoad Accelerator Board

FPGA

Host
CPU

PCIe Controller and
DMA Engine

NVMe Controller

Accelerators

DDR Controller

DDR

PCIe

DDR

TM

CMB

 Host CPU communicates with accelerators
via NVMe controller using standard NVMe
commands

 NVMe controller pushes and pulls commands
and data via DMA engine

 NVMe controller is in-house developed soft
controller on a RISC-V

 Board has external DDR for accelerators that
require large data storage

 Controller supports command queue and
data CMB (using portion of DDR)

 Developed an accelerator wrapper to handle
details of NVMe

2018 Storage Developer Conference. © Eideticom. All Rights Reserved. 6

NVMe for Accelerators

 Presents as NVMe 1.3 device with multiple namespaces
 One namespace per accelerator

 Accelerators map to namespaces and are discovered using identify
namespace command
 Vendor specific fields provide accelerator specific information

 Configuration using in-situ data path configuration or vendor specific
command

 Input data and in-situ configuration are transferred using NVMe Writes to
the namespace associated with the accelerator

 Output data and in-situ status are transferred using NVMe Reads to the
namespace associated with the accelerator

2018 Storage Developer Conference. © Eideticom. All Rights Reserved. 7

NVMe for Accelerators

 In-house NVMe controller supports advanced features including queue and
data CMB, SGL and NVMe-oF

 Also support peer-to-peer (P2P) operation
 No customized drivers required – all inbox drivers!
 Leverage industry-standard NVMe test tools

 FIO and nvme-cli
 Assist with deployment and benchmarking

 Take advantage of rich NVMe ecosystem
 Can leverage servers and storage systems developed for NVMe

2018 Storage Developer Conference. © Eideticom. All Rights Reserved. 8

libnoload

 Developed user API to assist with common tasks
associated with acceleration over NVMe

 Provides C and C++ libraries
 Handles discovering NoLoad adapters and

enumerating accelerators on the adapters
 Provides support to lock/unlock accelerators
 Provides thin wrappers over system calls for writing

data to and reading results back from the
accelerators

 Handles seamless integration with our accelerator
interface IP

 API is BSD licensed and available via our public
github

SPDK

Management

nvme-cli
nvme-of

…

libnoload

Applications

Userspace

Hardware

OS

2018 Storage Developer Conference. © Eideticom. All Rights Reserved. 9

Controller Performance

0

1

2

3

4

5

6

7

8

0.5KB 1KB 2KB 4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB

T
h

ro
u

g
h

p
u

t
(G

B
/s

)

Block Size

Gen3x8 U.2 (Gen3x4)
 Results for single RISC-V core

controller implementation
 Saturating bus for ≥32 kB block transfer

for Gen3x8 (COTS FPGA card)
 Saturating bus for ≥16 kB block transfer

for Gen3x4 (U.2 form factor)
 Focus to date has been on accelerators

with ≥16 kB block sizes (i.e. EC,
compression)

 Working on multicore RISC-V system
that drastically improves small block
performance

2018 Storage Developer Conference. © Eideticom. All Rights Reserved. 10

NVMe-over-Fabrics

 NVMe-over-Fabrics
(NVMe-oF) allows
namespaces to be shared
across networks

 Expose NVMe
namespaces to client
machines using inbox
drivers

 NoLoad is a standard
namespace:
 Can share it in the

same way as any
other NVMe device

RDMA or
TCP/IP
Network

Clients Servers NVMe
SSDs

NoLoad ™ U.2

2018 Storage Developer Conference. © Eideticom. All Rights Reserved. 11

NVMe-over-Fabrics

 Clients request to borrow
namespace(s) from server
 Recall that accelerators

map to namespaces
 Client given access to the

namespace (aka accelerator)
over the connection

RDMA or
TCP/IP
Network

Clients Servers NVMe
SSDs

NoLoad ™ U.2

2018 Storage Developer Conference. © Eideticom. All Rights Reserved. 12

NVMe-over-Fabrics

 Clients see newly acquired namespaces as local NVMe block
devices

 Normal NVMe operations can be executed as if resources local
attached to client machine

2018 Storage Developer Conference. © Eideticom. All Rights Reserved. 13

Case Study: Compression-over-Fabrics

 Demonstrate GZIP compression-over-
fabrics
 Both RoCE and TCP/IP networking

 Both NoLoad and generic NVMe SSD
located on remote server

 U.2 accelerator form factor (Gen 3x4)
 Local client running the application is

unaware that it is using an over-Fabrics
acceleration device
 User space code is exactly the

same direct attach, over-Fabrics,
or peer-to-peer

NIC

Local Client running
application

NoLoad ™
U.2

Generic
NVMe SSD

x86 Client

Stingray ™ Server

High-speed Network

2018 Storage Developer Conference. © Eideticom. All Rights Reserved. 14

Case Study: Compression-oF Results

 Compression over RoCE
or TCP/IP attains same
throughput as direct
attach

 Fabrics latency is hidden
by having multiple
compression operations in
flight

 More about impact on
target machine to follow

2018 Storage Developer Conference. © Eideticom. All Rights Reserved. 15

Case Study: EC-over-Fabrics

 ISA-L compatible Reed-Solomon based
EC over RoCE and TCP/IP

 Supports up to 32+4 disk groups with
block sizes ranging from 16kB to 128kB

 Gen3x16 accelerator form factor
 Both NoLoad and generic NVMe SSD

located on remote server
 User space code is exactly the same

direct attach, over-Fabrics, or peer-to-
peer

NIC

Local Client running
application

NoLoad ™
COTS

x86 Client

NIC
x86 Target

High-speed Network

2018 Storage Developer Conference. © Eideticom. All Rights Reserved. 16

Case Study: EC-oF Results

 Client software is not aware
that it is performing EC over
fabrics connection

 Results have a small latency
penalty vs direct attach results

2018 Storage Developer Conference. © Eideticom. All Rights Reserved. 17

Mitigating Target Impact (CPU)
 What is the impact on resources in target machine?

 All transfers flow into and out of DDR on CPU
 Target CPU has to process all commands
 How to mitigate?

 NVMe-oF Offload allows the NIC to directly connect to NVMe devices
 Using Mellanox ConnectX-5 can offload the NVMe work from the target CPU

2018 Storage Developer Conference. © Eideticom. All Rights Reserved. 18

Mitigating Target Impact (Memory)

 NVMe CMB (Controller Memory Buffer)
is a PCIe BAR that can be used for
Submission and Completion Queues,
PRPs, SGLs, and data

 PCIe drivers can register memory or
request access to memory for DMA

 P2P framework called p2pmem is being
proposed for Linux kernel

 P2P DMA allows us to bypass CPU
DRAM

CPU

D
R

AM

N
IC

N
VM

e
PC

Ie

PC
Ie

DDR

Traditional DMAs

CPU

D
R

AM

N
IC

N
oLoad

PC
Ie

PC
Ie

DDR

P2P DMAs

C
M

B

2018 Storage Developer Conference. © Eideticom. All Rights Reserved. 19

Processor Offload

 NVMe Offload + p2pmem = Big Savings

	FPGA Accelerator Disaggregation Using NVMe-over-Fabrics
	Acceleration
	NoLoad Accelerator
	Why NVMe?
	Accelerator and Controller Architecture
	NVMe for Accelerators
	NVMe for Accelerators
	libnoload
	Controller Performance
	NVMe-over-Fabrics
	NVMe-over-Fabrics
	NVMe-over-Fabrics
	Case Study: Compression-over-Fabrics
	Case Study: Compression-oF Results
	Case Study: EC-over-Fabrics
	Case Study: EC-oF Results
	Mitigating Target Impact (CPU)
	Mitigating Target Impact (Memory)
	Processor Offload

