
2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 1

NTT Confidential

Challenges for Implementing PMEM Aware
Application with PMDK

Yoshimi Ichiyanagi
NTT Software Innovation Center

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 2

NTT Confidential

Outline
1. Introduction
2. Background and Motivation
3. How to use PMEM
4. Challenges for implementing PMEM aware

applications
5. Challenges for performance evaluation to get

valid results

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 3

NTT Confidential

Outline
1. Introduction
2. Background and Motivation
3. How to use PMEM
4. Challenges for implementing PMEM aware

applications
5. Challenges for performance evaluation to get

valid results

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 4

NTT Confidential

Introduction
 NTT Software Innovation Center is part of NTT

Laboratories

 Worked on system software
Distributed file system (HDFS)
Operating system (Linux kernel)

 Trying to rewrite open-source software using new
storage and new library

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 5

NTT Confidential

Outline
1. Introduction
2. Background and Motivation
3. How to use PMEM
4. Challenges for implementing PMEM aware

applications
5. Challenges for performance evaluation to get

valid results

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 6

NTT Confidential

Background
 Persistent memory (PMEM) begins to be supplied

 NVDIMM-N
 Intel® Optane™ DC Persistent Memory

 PMEM features are:
 Memory-like features

 Low-latency
 Byte-addressable

 Storage-like features
 large-capacity
 non-volatile

DRAM

Persistent memory
(PMEM)

Solid state disk (SSD)

Hard Disk (HDD)

Low

High

Small

Large

CapacityLatency
CPU

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 7

NTT Confidential

Motivation
 Trying to rewrite storage applications since PMEM

features are utilized
RDBMS (e.g. PostgreSQL)
Message queue systems (e.g. Apache Kafka)
 etc.

 Let me share my challenges about PMEM
 Implementation
 Performance evaluation

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 8

NTT Confidential

Outline
1. Introduction
2. Background and Motivation
3. How to use PMEM
4. Challenges for implementing PMEM aware

applications
5. Challenges for performance evaluation to get

valid results

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 9

NTT Confidential

HW/SW components
 What kind of PMEM is used?

 NVDIMM-N

 What Linux kernel support is necessary to use PMEM?
 Direct-Access for files (DAX)

 Supported by ext4 and xfs

 What user library is used?
 Persistent Memory Development Kit (PMDK)

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 10

NTT Confidential

DAX FS and PMDK

Memory-mapped file

Application

PMEM (NVDIMM-N)

Library (PMDK)

DAX FS
Page Cache

Traditional FS

Application Application

User
Kernel

File I/O
APIs

File I/O
APIs CPU instructions

Context
Switch

Context
Switch

HW

Access like memoryAccess like storageAccess like storage

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 11

NTT Confidential

Benefits of DAX FS and PMDK
 With DAX FS only
Not necessary to rewrite applications

 With DAX FS and PMDK
Necessary to rewrite applications
Performance of I/O-intensive workload is

greatly improved

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 12

NTT Confidential

PMDK features
 Application accesses PMEM like memory

 Memory-mapped file (mmap file)

 Application developers can select fine-grained sync size
 Details are on the next slide

 CPU instructions suitable for copy data size are selected
 8 / 16 / 32 / 64 bytes registers
 MOVNT & SFENCE

 without CPU caches

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 13

NTT Confidential

PMDK sync function
 pmem_msync()

 File metadata and written data are flushed
 pmem_msync() calls msync syscall
 msync syscall is general sync API for mmap file

 pmem_drain()
 Only written data is flushed
 pmem_drain() is faster than pmem_msync()

pmem_msync() Pmem_drain()

Durability 〇
(Flush file metadata and written data)

△
(Flush written data only)

Performance × 〇

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 14

NTT Confidential

Implementing application with PMDK
 Trying to rewrite storage applications with PMDK

RDBMS – PostgreSQL (PG)
Message queue systems - Apache Kafka

 Let me share know-how gained by rewriting PG
Checkpoint file

Many writes occur during checkpoint
Write ahead logging (WAL)

Critical for transaction performance

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 15

NTT Confidential

Outline
1. Introduction
2. Background and Motivation
3. How to use PMEM
4. Challenges for implementing PMEM aware

applications
5. Challenges for performance evaluation to get

valid results

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 16

NTT Confidential

4. Challenges for implementation
1. How to resize checkpoint file
2. How to select sync function for WAL

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 17

NTT Confidential

4. Challenges for implementation
1. How to resize checkpoint file
2. How to select sync function for WAL

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 18

NTT Confidential

Resizing checkpoint file
 Huge table and so forth consist of multiple checkpoint

files
 Variable length up to 1GB
Necessary to resizing checkpoint file

 PMDK provides APIs for mmap file
Difficult to resize mmap file without overhead
 Best practice is to access only fixed-size file

We changed how to access only 1GB checkpoint file

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 19

NTT Confidential

How to resize mmap file
 Enlarge file

 Remap file

Enlarge
file

Remap
file

file

Enlarge

File
mapping

Only part of file can be
accessed with PMDK

Virtual address space

file
File

mapping

Whole file can be
accessed with PMDK

Virtual address space

file
File

mapping

Virtual address space

file File
mapping

Virtual address space

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 20

NTT Confidential

Implementation to enlarge file

DAX FS DAX FS and PMDK

Open fd = open(path, ...); addr1 = pmem_map_file
(path, len1, ...);

Unmap pmem_unmap(addr1, len1);

Extend truncate(path, len2);

Remap addr2 = pmem_map_file
(path, len2, ...);

Close close(fd); pmem_unmap(addr2, len2);

 3 function calls are added to use PMDK

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 21

NTT Confidential

Implementation to shrink file

DAX FS DAX FS and PMDK

Open fd = open(path, ...); addr1 = pmem_map_file
(path, len1, ...);

Unmap pmem_unmap(addr1, len1)

Shrink ftruncate(fd, len2); truncate(path, len2);

Remap addr2 = pmem_map_file
(path, len2, ...);

Close close(fd); pmem_unmap(addr2, len2);

 2 function calls are added to use PMDK

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 22

NTT Confidential

Resizing file with PMDK
 Difficult to use PMDK unless file size is fixed
Repeating remapping many times degrades

performance
Remapping file has large overhead

 By using PMDK, munmap() /close()/open()/mmap() syscall is
called again

Mapping large file may make file system full

 Best practice is to use fixed-size file only

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 23

NTT Confidential

4. Challenges for implementation
1. How to resize checkpoint file
2. How to select sync function for WAL

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 24

NTT Confidential

Selecting sync function for WAL
 How to write log to WAL file

 Initialization – create file and fill file with zero
Necessary to flush file metadata

 Synchronous logging - sequential synchronous write
Necessary to flush only written data

 PMDK sync APIs
 pmem_msync() – file metadata and written data are

flushed
 pmem_drain() – only written data is flushed

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 25

NTT Confidential

PMDK sync function for WAL
 Initialization of WAL file

Necessary to flush WAL file metadata
 pmem_msync()

 Synchronous logging
Necessary to flush only written data
 pmem_drain() or pmem_msync()

pmem_drain() is faster than pmem_msync()
We selected pmem_drain()

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 26

NTT Confidential

Comparing PMDK sync functions
 I ran microbenchmark to compare pmem_msync()

to pmem_drain()
Preprocessing

WAL initialization
Create file and fill file with zero and flush file metadata

Measurement processing
Synchronous logging
Overwrite data and flush written data

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 27

NTT Confidential

Microbenchmark

1. DAX FS
fdatasync()

2. DAX FS and PMDK
pmem_msync()

3. DAX FS and PMDK
pmem_drain()

Open open() pmem_map_file() pmem_map_file()

while () { while () { while() {

Write write() pmem_memcpy_nodrain() pmem_memcpy_nodrain()

Sync fdatasync() pmem_msync() pmem_drain()

Loop N } } }

Close close() pmem_unmap() pmem_unmap()

 Synchronous logging

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 28

NTT Confidential

Evaluation setup
32 GB
DRAM

32 GB
DRAM

CPU

CPU

Node0

Node1
Running

benchmarks

NUMA node

48 GB
PMEM

Hardware
CPU E5-2667 v4 x 2 (8 cores per node)

DRAM [Node0/1] 32 GB each

PMEM (NVDIMM-N) [Node1] 48 GB (HPE 8GB NVDIMM x 6)

Software
Distro Ubuntu 16.04

Linux kernel 4.17. 9*

PMDK 1.4.1

Filesystem ext4 (DAX available)

*: git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 29

NTT Confidential

Performance evaluation - microbenchmark
 pmem_drain() is fastest of 3 patterns as expected

• Total written data is 10 GB
• Block is 8 KB

[GB/s] 15 GB/s

4.3 GB/s

0.0023 GB/s
DAX FS

fdatasync()
DAX FS and PMDK

pmem_msync()
DAX FS and PMDK

pmem_drain()

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 30

NTT Confidential

PMDK sync functions
 pmem_drain() greatly improves performance of I/O-intensive

workload

 You should use pmem_drain() with caution
 pmem_drain() can’t flush file metadata

 pmem_msync() should be called by application that uses file
metadata such as
 Time of last modification
 Time of last access

 pmem_drain() doesn’t work without
pmem_memcpy_nodrain()

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 31

NTT Confidential

Outline
1. Introduction
2. Background and Motivation
3. How to use PMEM
4. Challenges for implementing PMEM aware

applications
5. Challenges for performance evaluation to get

valid results

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 32

NTT Confidential

5. Challenges for performance evaluation
 Difficult to get valid results in PG performance

evaluation

 What is valid result?
Avoid Non-Uniform Memory Access (NUMA)

effects
Avoid CPUs becoming hotspots

tuning application for PMEM

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 33

NTT Confidential

5. Challenges for performance evaluation
1. NUMA effect
2. Tuning application for PMEM

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 34

NTT Confidential

5. Challenges for performance evaluation
1. NUMA effect
2. Tuning application for PMEM

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 35

NTT Confidential

NUMA effect
 Synchronous write is about 1.5 times faster on

local NUMA node than on remote NUMA node
NUMA node 32 GiB

DRAM

32 GiB
DRAM

CPU

CPU

Node0

Node1

48 GiB
PMEM

Synchronous write

15 GB/s
11 GB/s

Local node Remote node

X1.5

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 36

NTT Confidential

5. Challenges for performance evaluation
1. NUMA effect
2. Tuning application for PMEM

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 37

NTT Confidential

Tuning application for PMEM
 Important to avoid calculation processing

becoming hotspot
Better to use Stored Procedure in PG

Stored Procedure improves PG performance since
user-defined functions are pre-compiled and stored in
PG serve

pgbench -c 16 -j 16 -T 1800 -r [db_name] -M
prepared

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 38

NTT Confidential

Evaluation setup
32 GB
DRAM

32 GB
DRAM

CPU

CPU

Node0

Node1
PG server

NUMA node

48 GB
PMEM

Hardware
CPU E5-2667 v4 x 2 (8 cores per node)

DRAM [Node0/1] 32 GB each

PMEM (NVDIMM-N) [Node1] 48 GB (HPE 8GB NVDIMM x 6)

SSD Intel® Optane™ SSD DC P4800X Series 750GB

Software
Distro Ubuntu 16.04

Linux kernel 4.17. 9

PMDK 1.4.1

Filesystem ext4 (DAX available)

PostgreSQL 10.4 Beta*

*: https://www.postgresql.org/message-id/C20D38E97BCB33DAD59E3A1%40lab.ntt.co.jp

750 GB
SSD

PG clients

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 39

NTT Confidential

Stored Procedure
 Improvement ratio using PMEM is improved by

12% compared with using SSD

Intel® Optane™ SSD
DC P4800X Series 750GB

PMEM
with DAX FS + PMDK

Without Stored
Procedure

With Stored
Procedure

18,396 tps

29,125 tps

x1.58

36,449 tps

21,406 tps

x1.70

[tps]

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. 40

NTT Confidential

Conclusion
 Difficult to implement PMEM aware applications

 Resizing file with overhead
 Best practice is to access only fixed-size file

 Selecting inappropriate sync function seriously
degrades performance or durability

 Difficult to get valid results in performance evaluation
 Avoiding NUMA effect
 Avoiding CPUs becoming hotspots

	Challenges for Implementing PMEM Aware Application with PMDK
	Outline
	Outline
	Introduction
	Outline
	Background
	Motivation
	Outline
	HW/SW components
	DAX FS and PMDK
	Benefits of DAX FS and PMDK
	PMDK features
	PMDK sync function
	Implementing application with PMDK
	Outline
	4. Challenges for implementation
	4. Challenges for implementation
	Resizing checkpoint file
	How to resize mmap file
	Implementation to enlarge file
	Implementation to shrink file
	Resizing file with PMDK
	4. Challenges for implementation
	Selecting sync function for WAL
	PMDK sync function for WAL
	Comparing PMDK sync functions
	Microbenchmark
	Evaluation setup
	Performance evaluation - microbenchmark
	PMDK sync functions
	Outline
	5. Challenges for performance evaluation
	5. Challenges for performance evaluation
	5. Challenges for performance evaluation
	NUMA effect
	5. Challenges for performance evaluation
	Tuning application for PMEM
	Evaluation setup
	Stored Procedure
	Conclusion

