
2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 1

Update on the SNIA Persistent Memory
Programming Model in Theory and Practice

Andy Rudoff
Intel

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 2

Agenda
 Why create the NVM Programming TWG?
 What the NVM Programming Model means to most people
 Details on actual implementations, specific to:

 Intel
 Linux
 Windows
 Virtualization

 Areas unspecified by NVMP
 Future work

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 3

What Motivated Us to Create the TWG

 Concerning direction in ecosystem
Products were emerging with private APIs
 ISVs forced to choose to ”lock in” to a product
Lots of mis-information, conflicting APIs

 But my reasons (Intel) were…

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 4

Big and Affordable Memory

High Performance Storage

Direct Load/Store Access

128, 256, 512GB

High Reliability

Hardware Encryption

DDR4 Pin Compatible

Native Persistence

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 5

What Everyone Should Know About Persistent Memory

 There are many ways to use it without modifying your
program or even knowing it is installed in the system

 Some applications will want direct access to it
 Best way to fully leverage what it can do

 The programming model is for those apps
 Libraries like PMDK build on it too

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 6

The SNIA Programming Model

 High order bits
 Model, not API
 In-kernel and User space

 To be honest…
 My goal of using memory-mapped files for pmem was

achieved with spec version 1.0 and the rest has been
value on top of that

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 7

Doug’s FMS Slides on the Four Modes

IO Persistent Memory

User View NVM.FILE NVM.PM.FILE

Kernel Protected NVM.BLOCK NVM.PM.VOLUME

Media Type Disk Drive Persistent Memory

NVDIMM Disk-Like Memory-Like

Block Mode Innovation Emerging PM Technologies

The current version (1.2) of the specification is available at
https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf

https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 8

My Summary of the Programming Model

Persistent Memory

U
SER

 SPAC
E

K
ER

N
EL SPAC

E

Standard
File API

Generic NVDIMM
Driver

Applicati
on

File
System

ApplicationApplicati
on

Standard
Raw

Device
Access

Load/
StoreManagement

Library

Manageme
nt UI

Standard
File API

pmem-
Aware

File System
MMU

Mappings

file memory

“DAX”

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 9

Intel-Specific Implementation Details
 Communicating with the OS

 ACPI 6.0+
 NFIT
 SMART

 E820 table
 HMAT
 UEFI

 BTT

 DSMs for communicating with NVDIMMs
 Not a standard

 CPU Cache Flush, PCOMMIT, ADR, eADR, Deep Flush

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 10

Intel: How the Hardware Works

W
PQ

ADR
-or-

WPQ Flush (kernel only)

Core

L1 L1

L2

L3

WPQ

MOV

DIMM

C
PU

 C
AC

H
ES

CLWB + fence
-or-

CLFLUSHOPT + fence
-or-

CLFLUSH
-or-

NT stores + fence
-or-

WBINVD (kernel only)

Minimum Required
Power fail protected domain:

Memory subsystem

Custom
Power fail protected domain

indicated by ACPI property:
CPU Cache Hierarchy

Not shown:
MCA

ADR Failure Detection

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 11

DAX mapped file?
(OS provides info)

CPU caches
considered
persistent?

(ACPI provides info)

CLWB?
(CPU_ID provides info)

CLFLUSHOPT?
(CPU_ID provides info)

Program Initialization

Use standard API for flushing
(msync/fsync or FlushFileBuffers)

Use CLFLUSH for flushing Use CLFLUSHOPT+SFENCE
for flushing

Use CLWB+SFENCE
for flushing

Stores considered persistent
when globally-visible

no yes

yes

yes

yes

no

no

no

App Responsibilities

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 12

Linux: Exposing Persistent Memory to Apps

 DAX mechanism added (replacing old XIP mechanism)
 Allowed drivers & file systems to provide direct

access
 ext4 & XFS support upstream

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 13

Linux: A Few Surprises That Came Up

 Using general-purpose filesystems
 pmfs work derailed early on

 Requiring MAP_SYNC
 Took a long time to arrive at this solution

 Attitude on per-mount DAX versus per-file
 Emerging support for RDMA
 Device DAX

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 14

Linux: Device DAX
 Doesn’t follow the SNIA programming model
 Surprising behavior for app writers:

 read(2)/write(2)/msync(2) don’t work!
 stat(2) doesn’t tell you the size

 Can’t back it up using off-the-shelf tools
 PMDK library hides as much of this as possible

 Only solution we have for
 RDMA w/long-lived registrations until WIP finishes
 Avoiding some minor FS annoyances (for now)

 ZFOD allocations, app control of large pages

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 15

Linux: Deep Flush
 Implemented in driver
 Exposed via sysfs (for Device DAX users)
 FS journal writes use it
 msync()/fsync() invokes it
 Unsafe shutdown detection
Left to user space to handle (for now)
Some last minute tweaks (permission issues)

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 16

Linux: Uncorrectable Error Handling
 Tracked in OS, driver will clear them on block zero
 “mcsafe” version of memcpy

 not used by any upstream FS yet
 NOVA did some excellent work in this area

 Apps can discover, catch SIGBUS
 punch hole/delete file to clear
 Clearing poison & writing new data NOT atomic

 PMDK provides one solution to this
 Complication: not safe to clear poison with ISA (yet)

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 17

Persistent Memory

User
Space

Kernel
Space

Driver

Application

pmem-Aware
File System

MMU
Mappings

Bad Blocks (512)

4k

4k

64

Machine Check Handler

SIGBUS
(via MCE or Bad Block mapping)

ARS

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 18

Windows: Implementation
 DAX mechanism added
NTFS so far

 User Space flush always safe
No need for something like MAP_SYNC

 No equivalent of Device DAX
 No exposure of Deep Flush to user space
 Emerging support for uncorrectables

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 19

Virtualization
 Several products announced to the public:

 Support for pmem programming model in a guest VM
 Expected to use virtual NFIT table
 VMware (vSphere 6.7), Hyper-V (announced intentions), KVM (upstream)

 Executive summary:
 No need for applications to be aware they are in a VM when using pmem
 Kudos to all these products for making this happen!

 Model (and other specs) silent of hard problems, like:
 How to detect eADR while allowing live migration
 Flushing large ranges
 Handling poison/machine checks in guests

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 20

Where We Could’ve Done Better
 Spec has some inconsistencies

 Example: arguments to operations like Flush, Clear Error
 Spec has some areas that aren’t covered at all

 Whether CPU caches even need flushing
 Key to building anything on top of the NVMP programming model

 How to discover
 Performance
 Granularity of operations
 Known lost data/Incomplete flush on failure

 (bad block list, unsafe shutdown count, etc.)

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 21

Future Work for TWG

 Continue to evolve spec
Bring it up to date
Add section on current practices

 Continue to evolve rpmem, RAS, transactions
 Continue education on persistent memory

	Update on the SNIA Persistent Memory Programming Model in Theory and Practice
	Agenda
	What Motivated Us to Create the TWG
	Slide Number 4
	What Everyone Should Know About Persistent Memory
	The SNIA Programming Model
	Doug’s FMS Slides on the Four Modes
	My Summary of the Programming Model
	Intel-Specific Implementation Details
	Intel: How the Hardware Works
	App Responsibilities
	Linux: Exposing Persistent Memory to Apps
	Linux: A Few Surprises That Came Up
	Linux: Device DAX
	Linux: Deep Flush
	Linux: Uncorrectable Error Handling
	Slide Number 17
	Windows: Implementation
	Virtualization
	Where We Could’ve Done Better
	Future Work for TWG

