September 24-27, 2018
Santa Clara, CA

www.storagedeveloper.org

Using persistent memory and RDMA for
Ceph client write-back caching

Scott Peterson, Senior Software Engineer
Intel

Ceph Concepts

Ceph from an application’s POV

| APP I | APP | | HOST/VM I | CLIENT]
— RADOSGW RBD CEPHFS

LIBRADDS

- Abucket:-basad REST Aroliablo and fully- A POSIX-compliant
A library allowing ; th block device, | distributed fils system,
Bpes Lo circctly 53 and Swift with & Linux komel cliont | with a Linux kernel eliant
access RADOS, andd & QEMUSKVM driver | and support for FUSE
with support for
cvc“#m
and PHP

We are here

SDC

2018 Storage Developer Conference. © Intel Corporation. All Rights

How Ceph places and replicates objects

(nrep, hashioid) & mask)
=+ pgid
=200
- ey

CRUSH(rule,

nrep’ pgid)
- osd?, psd3)

filter | , 0sd2, osd3)
—e (0502, 0sd3)

failure dnmain)"":‘“"‘“““""':"""
Figure 6.2: Objects are grouped into placement groups (PGs), and distributed to OSDs via

CRUSH, a specialized replica placement function. Failed OSDs (e. g osd1) are filtered out of
the final mapping.

https://ceph.com/wp-content/uploads/2016/08/weil-thesis. pdf

Block storage in Ceph

RADOS Block Device (RBD)

7 RADOS is the underlying Ceph object store
Scales to 100’s of nodes, and 1000’s of OSDs
Per-pool (OSD grouping) replication/EC policy
Objects and replicas relocated or replaced on OSD add/fail/remove
3 RBD volumes are a series of objects
Typically 4M
Replication/EC determined by the OSD pool that contains the volume
Thin provisioning (discard), snapshots, and cloning at object granularity
RBD clients map LBASs to objects, and perform remote object 10

0 Performance implications
Lots of devices usually improves throughput
Meeting volume latency targets requires all OSDs to meet that target
Average e2e latency and variability can be a problem

S D @ 2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved.

Intel RBD client caching work

Improving RBD performance with fast client-local storage

A Shared read cache (hitps:/github.com/ceph/ceph/pull/22573)
Objects in snapshot parents are immutable
Cache these in local SSD, share with all open child images
Uses object dispatch interface (bottom edge of librbd)

3 Write back cache (https://github.com/ceph/ceph/pull/24066)

Block writes complete when persisted to local Optane DC
Guarantee writes flush to RADOS eventually
Uses ImageCache interface (top edge of librbd)

0 Replicated write back cache

Mirror Optane DC persistent memory to another node over RDMA
Block writes complete when persisted in both pmem devices

S D @ 2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved

Persistent memory attributes ... M

(intel OPTANE DCO» Sl
o il Al S

@D nmnsn 4

0 Mapped into application’s address space =
Direct load/store - .

0 Byte addressable This is what we’re using.

7 Can DMA/RDMA to/from pmem ThisIs hoy we're using it
Remote persistence still evolving
Platform variation hidden by PMDK
FSDAX support not here yet

7 RDMA to fsdax a few kernel revs away
71 Devdax has fewer issues, but is less convenient

for user mode apps to use

All Rights Reserv

S D @ 2018 Storage Developer Conference. © Intel Corporation.

Persistent memory programming

0 Almost like DRAM _
PMDK overview

But apps need to think about (https://pmem.io/)
failure

0 Manage change visibility

New object and pointer to it can’t
appear without the other

7 Libpmemobj reserve/publish helps
here

Use PMDK transactions

Visibility includes persistence
0 Still need runtime locking

Transactions aren’t locks

S D @ 2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved.

| PCJ | [python |

e rsistent | [Inte
tion

mmmmm

memory
(uopmerm I ibromer: —JHIN) NN

Write back cache uses this

Why use persistent memory for cache?

0 Caching is metadata intensive
Write, Write Same, or discard? Length? Offset?
Pmem is happy with small writes. SSDs, not so much.

07 PMDK enables transactional changes and allocation
Multiple changes to persistent structures all persist, or none do
Variable sized write buffers, can be freed in any order

a We can replicate persistent memory via RDMA

PMDK applies all writes and transactions to local and remote
7 This “pool replication” feature is still experimental

All-hardware replica write path possible

S D @ 2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved.

Replicated Write Log components

Application
(QEMU)

librkeg

R/O cache

Replica daz2mon

Librbd

S D @ 2018 Storage Developer Conference. © Intel Corporation. All Rights Res

\ Flusher

Source of writes for RBD volume (e.g.
“imagel”’). Only one at any time.

Active flusher (flush RBD writes through
cache below to RADOS)

Buffer & log entry writes (multiple steps)

RDMA to replica an each persist step

DAX capable filesystem (e.g. /pmemO)
Pool file (e.g. /pmem0/rwl-image.pool)

Other caches layered below

Standby flusher

Replica pool file (e.g. /pmemO0/rwl-image | .pool)

RWL pmem structures

Ring 0 I N
Head (new) 6 8
Tail (old)
0 |
16 8
. . . o I
Fixed size ring of 64-byte log —
entries, with pointers to allocated
N
data buffers \ Y
¥

S D @ 2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved

Separate buffers enable out or order retire

Head (new) 16 8 NULL
Tail (old)
0 |
Out of order free possible for overwrite, 3 8
discard, etc. 0 |

Here the write to LBA 16 was completely
overwritten by a later write. N\

Free buffer and NULL pointer from ring (in
a transaction)

S D @ 2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved

Basic steps in an RWL write

Application calls rbd_aio_write()

Writes that overlap with in-flight writes are deferred

Reserve data buffer (non-persistent local operation)

Copy and persist/replicate payload data

Schedule log entry append, which determines the write order
Copy, persist/replicate a group of ready log entries

In a transaction

Advance ring head to include appended group
Publish payload buffer allocations for all appended entries

0 Schedule completion callbacks for appended entries

S D @ 2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved.

O o o aad

Failure scenario:
Writing node dies

a3 Previously appended writes will be readable and flushed

Flushed either on failed node reboot, or by the replica
node

a Writes that didn’t finish appending will not be readable

If the append transaction doesn’t complete, those writes
didn’t happen

Entries may have been persisted, but the head pointer
won't include them

Payload buffers may have been persisted, but no valid
entry points to them and their allocation was never
published

S D @ 2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved

Failure scenario:
Replica node or replica NVDIMM dies

a3 Writing node proceeds without it
3 New replica chosen and resilvered

d Failover not implemented

PMDK pool replication can't currently be
changed on the fly

Pool replication is still experimental

S D @ 2018 Storage Developer Conference. © Intel Corporation. All Rights Reserv

Faillure scenario:
Writing node NVDIMM dies

0 If that means you get a machine check ...
Game over for writing node - same as node failure
If we know this is true, we can exploit it

7 In persist-on-flush mode writes can complete before persist & replicate voo | [

a If the writing node survives ...
If there’s another local NVDIMM ...

7 Resilver replacement local replica there
7 Restart in-flight writes with new poolset (must still have caller’s buffer)

If there’s no local NVDIMM ...

7 Flush from replica, disable RWL, restart in-flight writes, and continue w/o cache
We could also use a local pmem replica, but haven't tested that yet

S D @ 2018 Storage Developer Conference. © Intel Corporation. All Rights Reserve

Performance goals and measurements

17 RWL target use case Is a typical VM volume
VM throttled at 2000 4K writes/sec per volume
QD8, barriers every 128 writes

1 Goal: complete 99.99% of writes in <3mS

S D @ 2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved.

est setup

1 3 Ceph nodes, 12 NVMe OSDs
4 NVMe SSDs each
Single 25G Ethernet
2 sockets, 96 cores, 377G
0 Separate client node, with pmem
2 sockets, 112 cores, 188G, same 25G Ethernet
EXT4 on a 3DXpoint DIMM in fsdax mode
3 A version of fio that supports RBD barriers (calls rbd_aio_flush())
07 Pmem pool for each RBD volume is 1G
PMEM IS PMEM_FORCE=1 (not safe for production)
That's 2x or 4x what these need, but RWL can’t go any smaller yet

S D @ 2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. el

Measurements

With RWL No Yes No Yes

Average 2.2mS |65uS 4.3mS 127uS
90% 2.4mS |63uS 7mS 126uS
99% 3.8mS 326uS 2ImS 289uS
99.9% 59mS 1.06mS 40mS 783uS
99.99% 22.4mS 23mS 53mS 2.2mS

Fio args: --rw=randwrite --bs=4k --direct=1 --iodepth=8 --rate_iops=2K --rate_cycle=5000 --time_based=1 --
runtime=600 --ramp_time=20 --write_barrier=128 --rate_process=poisson

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured
using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and
performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to
www.intel.com/benchmarks

S D @ 2018 Storage Developer Conference. © Intel Corporation. All Rights Res

Summary and Call To Action

0 RWL improves latency for writes. 99.99% <3mS, vs. 20mS without.

0 Persistent Memory (e.g., OptaneDC) coupled with high speed fabric
gives best possible RWL latency

Essentially zero CPU overhead on the replica side
Lab experiments show promising results with RDMA replication
0 RWL patch is in review now

Replication possible with that code, but not feature complete
7 Manual setup, custom kernel, no failover

Can be used now without replication.
7 Lower performance until fsdax is fully baked

Try it. Review it. Let us know how you'd use it.

S D @ 2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved.

hank you

0 Shared persistent read-only cache
https://github.com/ceph/ceph/pull/22573

0 Replicated Write Log
https://github.com/ceph/ceph/pull/24066

0 FIO with RBD barrier support (rbd_aio_flush() on barrier)
https://github.com/sdpeters/fio/tree/rbd-barriers

0 PMDK
https://pmem.io/
Pool replication (experimental): https://goo.gl/VHz7Wi

S D @ 2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved.

	Using persistent memory and RDMA for �Ceph client write-back caching
	Ceph Concepts
	Block storage in Ceph�RADOS Block Device (RBD)
	Intel RBD client caching work�Improving RBD performance with fast client-local storage
	Persistent memory attributes
	Persistent memory programming
	Why use persistent memory for cache?
	Replicated Write Log components
	RWL pmem structures
	Separate buffers enable out or order retire
	Basic steps in an RWL write
	Failure scenario: �Writing node dies
	Failure scenario: �Replica node or replica NVDIMM dies
	Failure scenario: �Writing node NVDIMM dies
	Performance goals and measurements
	Test setup
	Measurements
	Summary and Call To Action
	Thank you

