
2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 1

Using persistent memory and RDMA for
Ceph client write-back caching

Scott Peterson, Senior Software Engineer
Intel

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 2

Ceph Concepts

https://ceph.com/wp-content/uploads/2016/08/weil-thesis.pdf

How Ceph places and replicates objectsCeph from an application’s POV

We are here

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 3

Block storage in Ceph
RADOS Block Device (RBD)

 RADOS is the underlying Ceph object store
 Scales to 100’s of nodes, and 1000’s of OSDs
 Per-pool (OSD grouping) replication/EC policy
 Objects and replicas relocated or replaced on OSD add/fail/remove

 RBD volumes are a series of objects
 Typically 4M
 Replication/EC determined by the OSD pool that contains the volume
 Thin provisioning (discard), snapshots, and cloning at object granularity
 RBD clients map LBAs to objects, and perform remote object IO

 Performance implications
 Lots of devices usually improves throughput
 Meeting volume latency targets requires all OSDs to meet that target
 Average e2e latency and variability can be a problem

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 4

Intel RBD client caching work
Improving RBD performance with fast client-local storage

 Shared read cache (https://github.com/ceph/ceph/pull/22573)
 Objects in snapshot parents are immutable

 Cache these in local SSD, share with all open child images
 Uses object dispatch interface (bottom edge of librbd)

 Write back cache (https://github.com/ceph/ceph/pull/24066)
 Block writes complete when persisted to local Optane DC
 Guarantee writes flush to RADOS eventually
 Uses ImageCache interface (top edge of librbd)

 Replicated write back cache
 Mirror Optane DC persistent memory to another node over RDMA
 Block writes complete when persisted in both pmem devices

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 5

Persistent memory attributes
 Mapped into application’s address space

 Direct load/store -
 Byte addressable
 Can DMA/RDMA to/from pmem

 Remote persistence still evolving
 Platform variation hidden by PMDK
 FSDAX support not here yet

 RDMA to fsdax a few kernel revs away
 Devdax has fewer issues, but is less convenient

for user mode apps to use

This is what we’re using.
This is how we’re using it.

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 6

Persistent memory programming
 Almost like DRAM

 But apps need to think about
failure

 Manage change visibility
 New object and pointer to it can’t

appear without the other
 Libpmemobj reserve/publish helps

here

 Use PMDK transactions
 Visibility includes persistence

 Still need runtime locking
 Transactions aren’t locks

PMDK overview
(https://pmem.io/)

Write back cache uses this

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 7

Why use persistent memory for cache?
 Caching is metadata intensive

 Write, Write Same, or discard? Length? Offset?
 Pmem is happy with small writes. SSDs, not so much.

 PMDK enables transactional changes and allocation
 Multiple changes to persistent structures all persist, or none do
 Variable sized write buffers, can be freed in any order

 We can replicate persistent memory via RDMA
 PMDK applies all writes and transactions to local and remote

 This “pool replication” feature is still experimental

 All-hardware replica write path possible

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 8

Replicated Write Log components
Compute Node

Application
(QEMU)

Librbd

Replicator Flusher

PMEM

Storage Node

PMEM

Replica daemon

Librbd

Write Log

Replicator FlusherWrite Log

R/O cache

Active flusher (flush RBD writes through
cache below to RADOS)

Source of writes for RBD volume (e.g.
“image1”). Only one at any time.

DAX capable filesystem (e.g. /pmem0)

Standby flusher

Other caches layered below

Pool file (e.g. /pmem0/rwl-image1.pool)

Replica pool file (e.g. /pmem0/rwl-image1.pool)

Buffer & log entry writes (multiple steps)

RDMA to replica an each persist step

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 9

RWL pmem structures

Pool Root

Ring

Head (new)

Tail (old)

LBA Len Buffer

0 1

16 8

0 1

16 8

0 1
Fixed size ring of 64-byte log
entries, with pointers to allocated
data buffers

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 10

Separate buffers enable out or order retire

Out of order free possible for overwrite,
discard, etc.

Here the write to LBA 16 was completely
overwritten by a later write.

Free buffer and NULL pointer from ring (in
a transaction)

Pool Root

Ring

Head (new)

Tail (old)

LBA Len Buffer

0 1

16 8 NULL

0 1

16 8

0 1

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 11

Basic steps in an RWL write
 Application calls rbd_aio_write()
 Writes that overlap with in-flight writes are deferred
 Reserve data buffer (non-persistent local operation)
 Copy and persist/replicate payload data
 Schedule log entry append, which determines the write order
 Copy, persist/replicate a group of ready log entries
 In a transaction

 Advance ring head to include appended group
 Publish payload buffer allocations for all appended entries

 Schedule completion callbacks for appended entries

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 12

Failure scenario:
Writing node dies

 Previously appended writes will be readable and flushed
 Flushed either on failed node reboot, or by the replica

node
 Writes that didn’t finish appending will not be readable

 If the append transaction doesn’t complete, those writes
didn’t happen

 Entries may have been persisted, but the head pointer
won’t include them

 Payload buffers may have been persisted, but no valid
entry points to them and their allocation was never
published

Compute Node

Application
(QEMU)

Librbd

Replicator Flusher

PMEM

Storage Node

PMEM

Replica daemon

Librbd

Write Log

Replicator FlusherWrite Log

R/O cache

X

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 13

Failure scenario:
Replica node or replica NVDIMM dies
 Writing node proceeds without it
 New replica chosen and resilvered
 Failover not implemented

 PMDK pool replication can’t currently be
changed on the fly

 Pool replication is still experimental

Compute Node

Application
(QEMU)

Librbd

Replicator Flusher

PMEM

Storage Node

PMEM

Replica daemon

Librbd

Write Log

Replicator FlusherWrite Log

R/O cache

X
X

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 14

Failure scenario:
Writing node NVDIMM dies
 If that means you get a machine check …

 Game over for writing node - same as node failure
 If we know this is true, we can exploit it

 In persist-on-flush mode writes can complete before persist & replicate

 If the writing node survives …
 If there’s another local NVDIMM …

 Resilver replacement local replica there
 Restart in-flight writes with new poolset (must still have caller’s buffer)

 If there’s no local NVDIMM …
 Flush from replica, disable RWL, restart in-flight writes, and continue w/o cache

 We could also use a local pmem replica, but haven’t tested that yet

Compute Node

Application
(QEMU)

Librbd

Replicator Flusher

PMEM

Storage Node

PMEM

Replica daemon

Librbd

Write Log

Replicator FlusherWrite Log

R/O cache X

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 15

Performance goals and measurements

 RWL target use case is a typical VM volume
VM throttled at 2000 4K writes/sec per volume
QD8, barriers every 128 writes

 Goal: complete 99.99% of writes in <3mS

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 16

Test setup
 3 Ceph nodes, 12 NVMe OSDs

 4 NVMe SSDs each
 Single 25G Ethernet
 2 sockets, 96 cores, 377G

 Separate client node, with pmem
 2 sockets, 112 cores, 188G, same 25G Ethernet
 EXT4 on a 3DXpoint DIMM in fsdax mode

 A version of fio that supports RBD barriers (calls rbd_aio_flush())
 Pmem pool for each RBD volume is 1G

 PMEM_IS_PMEM_FORCE=1 (not safe for production)
 That’s 2x or 4x what these need, but RWL can’t go any smaller yet

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 17

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured
using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and
performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to
www.intel.com/benchmarks

Measurements
Volumes 1 (100G) 16 (10G each)

With RWL No Yes No Yes

Average 2.2mS 165uS 4.3mS 127uS

90% 2.4mS 163uS 7mS 126uS

99% 3.8mS 326uS 21mS 289uS

99.9% 5.9mS 1.06mS 40mS 783uS

99.99% 22.4mS 2.3mS 53mS 2.2mS
Fio args: --rw=randwrite --bs=4k --direct=1 --iodepth=8 --rate_iops=2K --rate_cycle=5000 --time_based=1 --
runtime=600 --ramp_time=20 --write_barrier=128 --rate_process=poisson

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 18

Summary and Call To Action
 RWL improves latency for writes. 99.99% <3mS, vs. 20mS without.
 Persistent Memory (e.g., OptaneDC) coupled with high speed fabric

gives best possible RWL latency
 Essentially zero CPU overhead on the replica side
 Lab experiments show promising results with RDMA replication

 RWL patch is in review now
 Replication possible with that code, but not feature complete

 Manual setup, custom kernel, no failover

 Can be used now without replication.
 Lower performance until fsdax is fully baked

 Try it. Review it. Let us know how you’d use it.

2018 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 19

Thank you
 Shared persistent read-only cache

 https://github.com/ceph/ceph/pull/22573
 Replicated Write Log

 https://github.com/ceph/ceph/pull/24066
 FIO with RBD barrier support (rbd_aio_flush() on barrier)

 https://github.com/sdpeters/fio/tree/rbd-barriers
 PMDK

 https://pmem.io/
 Pool replication (experimental): https://goo.gl/VHz7Wi

	Using persistent memory and RDMA for �Ceph client write-back caching
	Ceph Concepts
	Block storage in Ceph�RADOS Block Device (RBD)
	Intel RBD client caching work�Improving RBD performance with fast client-local storage
	Persistent memory attributes
	Persistent memory programming
	Why use persistent memory for cache?
	Replicated Write Log components
	RWL pmem structures
	Separate buffers enable out or order retire
	Basic steps in an RWL write
	Failure scenario: �Writing node dies
	Failure scenario: �Replica node or replica NVDIMM dies
	Failure scenario: �Writing node NVDIMM dies
	Performance goals and measurements
	Test setup
	Measurements
	Summary and Call To Action
	Thank you

