September 24-27, 2018
Santa Clara, CA

www.storagedeveloper.org

Challenges for Implementing PMEM Aware
Application with PMDK

Yoshimi Ichiyanagi
NTT Software Innovation Center

Outline

NTT Confidential

Introduction
Background and Motivation

1.
2.
3. How to use PMEM
4.

Challenges for implementing PMEM aware
applications

5. Challenges for performance evaluation to get
valid results

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

Outline

NTT Confidential

Background and Motivation

1.
2.
3. How to use PMEM
4.

Challenges for implementing PMEM aware
applications

5. Challenges for performance evaluation to get
valid results

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

Introduction

d NTT Software Innovation Center is part of NTT
Laboratories

NTT Confidential

7 Worked on system software
Distributed file system (HDFS)
Operating system (Linux kernel)

0 Trying to rewrite open-source software using new
storage and new library

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

Outline

NTT Confidential

Introduction

1.
2.
3. How to use PMEM
4.

Challenges for implementing PMEM aware
applications

5. Challenges for performance evaluation to get
valid results

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

Background
a Persistent memory (PMEM) begins to be supplied

NTT Confidential

NVDIMM-N
Intel® Optane™ DC Persistent Memory I! Small
0 PMEM features are: DRAM \\ Capacity
Memory-like features
7 Low-latency Persistent memory
7 Byte-addressable (PMEM)
Storage—llke f_eatures / Solid state disk (SSD)
7 large-capacity :
7 non-volatile / Hard Disk (HDD)

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

Motivation

3 Trying to rewrite storage applications since PMEM
features are utilized

RDBMS (e.g. PostgreSQL)
Message queue systems (e.g. Apache Kafka)
etc.

NTT Confidential

d Let me share my challenges about PMEM
Implementation
Performance evaluation

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

Outline

NTT Confidential

1. Introduction

2. Background and Motivation

3.

4. Challenges for implementing PMEM aware
applications

5. Challenges for performance evaluation to get
valid results

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

HW/SW components
0 What kind of PMEM Is used?

NTT Confidential

0 What Linux kernel support is necessary to use PMEM?

7 Supported by ext4 and xfs

0 What user library is used?

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

DAX FS and PMDK

NTT Confidential

Access like storage Access like storage Access like memory
A A
A
Context | File I/O Context | File I/O . :
Switch_J APIs Switch | APIs CPU instructions
__ A
Kernel ' § 1 1
| Traditional FS_| Memory-mapped file
Page Cache l

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

Benefits of DAX FS and PMDK

3 With DAX FS only
Not necessary to rewrite applications

NTT Confidential

0 With DAX FS and PMDK
Necessary to rewrite applications

Performance of I/O-intensive workload is
greatly improved

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

PMDK features

a Application accesses PMEM like memory
Memory-mapped file (mmap file)

NTT Confidential

0 Application developers can select fine-grained sync size
Detalls are on the next slide

0 CPU instructions suitable for copy data size are selected
8 /16 /32 /64 bytes registers
MOVNT & SFENCE

7 without CPU caches

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

PMDK sync function

0 pmem_msync()
File metadata and written data are flushed

7 pmem_msync() calls msync syscall
7 msync syscall is general sync API for mmap file

0 pmem_drain()
Only written data is flushed
pmem_drain() is faster than pmem_msync()

NTT Confidential

_ pmem_msync() Pmem_drain()

Durability O A
(Flush file metadata and written data) (Flush written data only)
Performance X

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

Implementing application with PMDK

3 Trying to rewrite storage applications with PMDK
RDBMS — PostgreSQL (PG)
Message queue systems - Apache Kafka

3 Let me share know-how gained by rewriting PG

Checkpoint file
7 Many writes occur during checkpoint

Write ahead logging (WAL)
7 Critical for transaction performance

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

NTT Confidential

Outline

NTT Confidential

1. Introduction

2. Background and Motivation
3. How to use PMEM
4

5. Challenges for performance evaluation to get
valid results

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

4. Challenges for implementation

NTT Confidential

1. How to resize checkpoint file
2. How to select sync function for WAL

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserve

4. Challenges for implementation

NTT Confidential

1
2. How to select sync function for WAL

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Rese

Resizing checkpoint file

7 Huge table and so forth consist of multiple checkpoint
files

Variable length up to 1GB
Necessary to resizing checkpoint file

NTT Confidential

7 PMDK provides APIs for mmap file
Difficult to resize mmap file without overhead

Best practice is to access only fixed-size file
7' We changed how to access only 1GB checkpoint file

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

How to resize mmap file

3 En

arge file

Enlarge
file

Virtual address space

7 Remap file
file -~ - Remap
file
_/—

Virtual address space

SDC

NTT Confidential

accessed with PMDK

B } Only part of file can be

Virtual address space

Whole file can be
file accessed with PMDK

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Rese

_/—__

Virtual address space

Implementation to enlarge file

7 3 function calls are added to use PMDK

NTT Confidential

DAX FS DAX FS and PMDK
Open fd = open(path, ...); |addrl = pmem_map_Ffile
(path, lenl, ...);
Unmap pmem_unmap(addrl, lenl);
Extend truncate(path, len2);
Remap addr2 = pmem _map_file
(path, len2, ...);
Close close(fd); pmem_unmap(addr2, [en2);

SDC

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

Implementation to shrink file

3 2 function calls are added to use PMDK

NTT Confidential

DAX FS DAX FS and PMDK
Open fd = open(path, ...); |addrl = pmem_map_Ffile
(path, lenl, ...);
Unmap pmem_unmap(addrl, lenl)
Shrink | ftruncate(fd, len2); |truncate(path, len2);
Remap addr2 = pmem _map_Tfile
(path, len2, ...);
Close close(fd); pmem_unmap(addr2, [en2);

SDC

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

Resizing file with PMDK

3 Difficult to use PMDK unless file size is fixed

Repeating remapping many times degrades
performance

7 Remapping file has large overhead

By using PMDK, munmap() /close()/open()/mmap() syscall is
called again

Mapping large file may make file system full

NTT Confidential

7 Best practice is to use fixed-size file only

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

4. Challenges for implementation

NTT Confidential

1. How to resize checkpoint file
2.

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Rese

Selecting sync function for WAL

7 How to write log to WAL file
Initialization — create file and fill file with zero
7 Necessary to flush file metadata

Synchronous logging - sequential synchronous write
7 Necessary to flush only written data

NTT Confidential

7 PMDK sync APIs

pmem_msync() — file metadata and written data are
flushed

pmem_drain() — only written data is flushed

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

PMDK sync function for WAL

3 Initialization of WAL file
Necessary to flush WAL file metadata
pmem_msync()

NTT Confidential

3 Synchronous logging
Necessary to flush only written data
pmem_drain() or pmem_msync()
Jpmem_drain() Is faster than pmem_msync()
7' We selected pmem_drain()

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

Comparing PMDK sync functions

NTT Confidential

3 | ran microbenchmark to compare pmem_msync()
to pmem_drain()
Preprocessing
WAL initialization
7 Create file and fill file with zero and flush file metadata
Measurement processing

7 Synchronous logging
10verwrite data and flush written data

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

Microbenchmark

3 Synchronous logging

NTT Confidential

I.DAXFS 2. DAX FS and PMDK 3.DAX FS and PMDK
fdatasync() pmem_msync() pmem_drain()
Open |open() pmem_map_file() pmem_map_file()
while () { while () { while() {
Write | write() pmem_memcpy_nodrain() | pmem_memcpy_nodrain()
Loop N|} } }
Close |close() pmem_unmap() pmem_unmap()

SDC

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

Evaluation setup

NUMAnode .. e
Hardware 32 GB
CPU E5-2667 v4 x 2 (8 cores per node)
DRAM [Node0/1] 32 GB each — 3 5
PMEM (NVDIMM-N) [Nodel] 48 GB (HPE 8GB NVDIMM x 6) CPU
Distro Ubuntu 1604 | ‘voder | —— :
Linux kernel 4.17.9% L Rljning } i

benchmarks

PMDK |.4.1 :
Filesystem ext4 (DAX available) I

__

*- qit://git.kernel.org/pub/scm/linux/kernel/qgit/stable/linux.qit

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

Performance evaluation - microbenchmark

NTT Confidential

d pmem_drain() is fastest of 3 patterns as expected

[GB/s] 000 15 GB/s
o0 4.3 GBIs « Total written data is 10 GB
:Zz Blockis 8 KB
M
oo 0.0023 GB/s

0.000

DAXFS DAXFSand PMDK DAXFS and PMDK
fdatasync() pmem_msync() pmem_drain()

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reservec

PMDK sync functions

0 pmem_drain() greatly improves performance of I/O-intensive
workload

NTT Confidential

0 You should use pmem_drain() with caution

pmem_drain() can’t flush file metadata

7 pmem_msync() should be called by application that uses file
metadata such as

Time of last modification

Time of last access
pmem_drain() doesn’t work without
pmem_memcpy_nodrain()

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

Outline

NTT Confidential

1. Introduction

2. Background and Motivation
3. How to use PMEM
4.

Challenges for implementing PMEM aware
applications

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

5. Challenges for performance evaluation

NTT Confidential

3 Difficult to get valid results in PG performance
evaluation

7 What is valid result?

Avoid Non-Uniform Memory Access (NUMA)
effects

Avoid CPUs becoming hotspots
Jtuning application for PMEM

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

5. Challenges for performance evaluation

1. NUMA effect
2. Tuning application for PMEM

NTT Confidential

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Rese

5. Challenges for performance evaluation

NTT Confidential

1.
2. Tuning application for PMEM

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Rese

NUMA effect

3 Synchronous write is about 1.5 times faster on
local NUMA node than on remote NUMA node

Synchronous write

NTT Confidential

16

4 T s

2 15 GBI/s
10

8

6

4

2

0

NUMA nodel NUMA node0

Local node Remote ode

e
v

5. Challenges for performance evaluation

1. NUMA effect
2.

NTT Confidential

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Rese

uning application for PMEM

NTT Confidential

d Important to avoid calculation processing
becoming hotspot

Better to use Stored Procedure in PG

7 Stored Procedure improves PG performance since
user-defined functions are pre-compiled and stored in
PG serve

gpgbench -¢c 16 -j 16 -T 1800 -r [db_name] -M
prepared

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

Evaluation setup

Hardware
CPU E5-2667 v4 x 2 (8 cores per node)
DRAM [Node0/1] 32 GB each

PMEM (NVDIMM-N) [Nodel] 48 GB (HPE 8GB NVDIMM x 6)

SSD Intel® Optane™ SSD DC P4800X Series 750GB
Distro Ubuntu 16.04

Linux kernel 4.17.9

PMDK |.4.1

Filesystem ext4 (DAX available)

PostgreSQL 0.4 Beta™

NTT Confidential

NUMA node

[PG clients]

X
|l DRAM
| ——

CPU

[PG server]

__

*: https://www.postgresaql.org/message-id/C20D38E97BCB33DAD59E3A1%40lab

SDC

2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved. o

Stored Procedure

3 Improvement ratio using PMEM is improved by

12% compared with using SSD
[tps] ™ 36,449 tps

3’00 . mmmmmmmmmm—g

30,000

25,000

________ | Without Stored

sow 18,396 tPS 21,406 tps Procedure

10,000

20,000

T With Stored
Procedure

5,000

0

Intel® Optane™ SSD PMEM
DC P4800X Series 750GB with DAX FS + PMDK

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

Conclusion

a0 Difficult to implement PMEM aware applications
Resizing file with overhead
7 Best practice is to access only fixed-size file

Selecting inappropriate sync function seriously
degrades performance or durability

NTT Confidential

ad Difficult to get valid results in performance evaluation
Avoiding NUMA effect
Avoiding CPUs becoming hotspots

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Reserved.

	Challenges for Implementing PMEM Aware Application with PMDK
	Outline
	Outline
	Introduction
	Outline
	Background
	Motivation
	Outline
	HW/SW components
	DAX FS and PMDK
	Benefits of DAX FS and PMDK
	PMDK features
	PMDK sync function
	Implementing application with PMDK
	Outline
	4. Challenges for implementation
	4. Challenges for implementation
	Resizing checkpoint file
	How to resize mmap file
	Implementation to enlarge file
	Implementation to shrink file
	Resizing file with PMDK
	4. Challenges for implementation
	Selecting sync function for WAL
	PMDK sync function for WAL
	Comparing PMDK sync functions
	Microbenchmark
	Evaluation setup
	Performance evaluation - microbenchmark
	PMDK sync functions
	Outline
	5. Challenges for performance evaluation
	5. Challenges for performance evaluation
	5. Challenges for performance evaluation
	NUMA effect
	5. Challenges for performance evaluation
	Tuning application for PMEM
	Evaluation setup
	Stored Procedure
	Conclusion

