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Introduction

d NTT Software Innovation Center is part of NTT
Laboratories

NTT Confidential

7 Worked on system software
Distributed file system (HDFS)
Operating system (Linux kernel)

0 Trying to rewrite open-source software using new
storage and new library
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Background
a Persistent memory (PMEM) begins to be supplied
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NVDIMM-N
Intel® Optane™ DC Persistent Memory I! Small
0 PMEM features are: DRAM \\ Capacity
Memory-like features
7 Low-latency Persistent memory
7 Byte-addressable (PMEM)
Storage—llke f_eatures / Solid state disk (SSD)
7 large-capacity :
7 non-volatile / Hard Disk (HDD)
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Motivation

3 Trying to rewrite storage applications since PMEM
features are utilized

RDBMS (e.g. PostgreSQL)
Message queue systems (e.g. Apache Kafka)
etc.
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d Let me share my challenges about PMEM
Implementation
Performance evaluation
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HW/SW components
0 What kind of PMEM Is used?
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0 What Linux kernel support is necessary to use PMEM?

7 Supported by ext4 and xfs

0 What user library is used?
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DAX FS and PMDK

NTT Confidential

Access like storage Access like storage Access like memory
A A
A
Context | File I/O Context | File I/O . :
Switch_J APIs Switch | APIs CPU instructions
____________________________________________________ A
Kernel ' § 1 1
| Traditional FS_| Memory-mapped file
Page Cache l
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Benefits of DAX FS and PMDK

3 With DAX FS only
Not necessary to rewrite applications

NTT Confidential

0 With DAX FS and PMDK
Necessary to rewrite applications

Performance of I/O-intensive workload is
greatly improved
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PMDK features

a Application accesses PMEM like memory
Memory-mapped file (mmap file)
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0 Application developers can select fine-grained sync size
Detalls are on the next slide

0 CPU instructions suitable for copy data size are selected
8 /16 /32 /64 bytes registers
MOVNT & SFENCE

7 without CPU caches
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PMDK sync function

0 pmem_msync()
File metadata and written data are flushed

7 pmem_msync() calls msync syscall
7 msync syscall is general sync API for mmap file

0 pmem_drain()
Only written data is flushed
pmem_drain() is faster than pmem_msync()

NTT Confidential

_ pmem_msync() Pmem_drain()

Durability O A
(Flush file metadata and written data) (Flush written data only)
Performance X
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Implementing application with PMDK

3 Trying to rewrite storage applications with PMDK
RDBMS — PostgreSQL (PG)
Message queue systems - Apache Kafka

3 Let me share know-how gained by rewriting PG

Checkpoint file
7 Many writes occur during checkpoint

Write ahead logging (WAL)
7 Critical for transaction performance
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4. Challenges for implementation
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1. How to resize checkpoint file
2. How to select sync function for WAL
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4. Challenges for implementation
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1
2. How to select sync function for WAL
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Resizing checkpoint file

7 Huge table and so forth consist of multiple checkpoint
files

Variable length up to 1GB
Necessary to resizing checkpoint file

NTT Confidential

7 PMDK provides APIs for mmap file
Difficult to resize mmap file without overhead

Best practice is to access only fixed-size file
7' We changed how to access only 1GB checkpoint file
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How to resize mmap file

3 En

arge file

Enlarge
file

Virtual address space

7 Remap file
file -~ - Remap
file
\_/—

Virtual address space

SDC
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accessed with PMDK

B } Only part of file can be

Virtual address space

Whole file can be
file accessed with PMDK
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Implementation to enlarge file

7 3 function calls are added to use PMDK
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DAX FS DAX FS and PMDK
Open fd = open(path, ...); |addrl = pmem_map_Ffile
(path, lenl, ...);
Unmap pmem_unmap(addrl, lenl);
Extend truncate(path, len2);
Remap addr2 = pmem _map_file
(path, len2, ...);
Close close(fd); pmem_unmap(addr2, [en2);

SDC
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Implementation to shrink file

3 2 function calls are added to use PMDK

NTT Confidential

DAX FS DAX FS and PMDK
Open fd = open(path, ...); |addrl = pmem_map_Ffile
(path, lenl, ...);
Unmap pmem_unmap(addrl, lenl)
Shrink | ftruncate(fd, len2); |truncate(path, len2);
Remap addr2 = pmem _map_Tfile
(path, len2, ...);
Close close(fd); pmem_unmap(addr2, [en2);

SDC
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Resizing file with PMDK

3 Difficult to use PMDK unless file size is fixed

Repeating remapping many times degrades
performance

7 Remapping file has large overhead

By using PMDK, munmap() /close()/open()/mmap() syscall is
called again

Mapping large file may make file system full

NTT Confidential

7 Best practice is to use fixed-size file only
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4. Challenges for implementation
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1. How to resize checkpoint file
2.
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Selecting sync function for WAL

7 How to write log to WAL file
Initialization — create file and fill file with zero
7 Necessary to flush file metadata

Synchronous logging - sequential synchronous write
7 Necessary to flush only written data

NTT Confidential

7 PMDK sync APIs

pmem_msync() — file metadata and written data are
flushed

pmem_drain() — only written data is flushed
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PMDK sync function for WAL

3 Initialization of WAL file
Necessary to flush WAL file metadata
pmem_msync()
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3 Synchronous logging
Necessary to flush only written data
pmem_drain() or pmem_msync()
Jpmem_drain() Is faster than pmem_msync()
7' We selected pmem_drain()
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Comparing PMDK sync functions
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3 | ran microbenchmark to compare pmem_msync()
to pmem_drain()
Preprocessing
WAL initialization
7 Create file and fill file with zero and flush file metadata
Measurement processing

7 Synchronous logging
10verwrite data and flush written data
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Microbenchmark

3 Synchronous logging
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I.DAXFS 2. DAX FS and PMDK 3.DAX FS and PMDK
fdatasync() pmem_msync() pmem_drain()
Open |open() pmem_map_file() pmem_map_file()
while () { while () { while() {
Write | write() pmem_memcpy_nodrain() | pmem_memcpy_nodrain()
Loop N|} } }
Close |close() pmem_unmap() pmem_unmap()

SDC
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Evaluation setup

NUMAnode .. e
Hardware 32 GB
CPU E5-2667 v4 x 2 (8 cores per node)
DRAM [Node0/1] 32 GB each — 3 5
PMEM (NVDIMM-N)  [Nodel] 48 GB (HPE 8GB NVDIMM x 6) CPU
Distro Ubuntu 1604 | ‘voder | —— :
Linux kernel 4.17.9% L Rljning } i

benchmarks

PMDK |.4.1 :
Filesystem ext4 (DAX available) I

____________________________________________

*- qit://git.kernel.org/pub/scm/linux/kernel/qgit/stable/linux.qit
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git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git

Performance evaluation - microbenchmark

NTT Confidential

d pmem_drain() is fastest of 3 patterns as expected

[GB/s] 000 15 GB/s
o0 4.3 GBIs « Total written data is 10 GB
:Zz  Blockis 8 KB
M
oo 0.0023 GB/s

0.000

DAXFS DAXFSand PMDK DAXFS and PMDK
fdatasync() pmem_msync() pmem_drain()
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PMDK sync functions

0 pmem_drain() greatly improves performance of I/O-intensive
workload

NTT Confidential

0 You should use pmem_drain() with caution

pmem_drain() can’t flush file metadata

7 pmem_msync() should be called by application that uses file
metadata such as

Time of last modification

Time of last access
pmem_drain() doesn’t work without
pmem_memcpy_nodrain()
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5. Challenges for performance evaluation

NTT Confidential

3 Difficult to get valid results in PG performance
evaluation

7 What is valid result?

Avoid Non-Uniform Memory Access (NUMA)
effects

Avoid CPUs becoming hotspots
Jtuning application for PMEM
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5. Challenges for performance evaluation

1. NUMA effect
2. Tuning application for PMEM

NTT Confidential

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Rese



5. Challenges for performance evaluation

NTT Confidential

1.
2. Tuning application for PMEM

S D @ 2018 Storage Developer Conference. © 2018 NTT Corp. All Rights Rese



NUMA effect

3 Synchronous write is about 1.5 times faster on
local NUMA node than on remote NUMA node

Synchronous write

NTT Confidential

16

4 T s

2 15 GBI/s
10

8

6

4

2

0

NUMA nodel NUMA node0

Local node Remote ode

e
v




5. Challenges for performance evaluation

1. NUMA effect
2.

NTT Confidential
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uning application for PMEM

NTT Confidential

d Important to avoid calculation processing
becoming hotspot

Better to use Stored Procedure in PG

7 Stored Procedure improves PG performance since
user-defined functions are pre-compiled and stored in
PG serve

gpgbench -¢c 16 -j 16 -T 1800 -r [db_name] -M
prepared
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Evaluation setup

Hardware
CPU E5-2667 v4 x 2 (8 cores per node)
DRAM [Node0/1] 32 GB each

PMEM (NVDIMM-N) [Nodel] 48 GB (HPE 8GB NVDIMM x 6)

SSD Intel® Optane™ SSD DC P4800X Series 750GB
Distro Ubuntu 16.04

Linux kernel 4.17.9

PMDK |.4.1

Filesystem ext4 (DAX available)

PostgreSQL 0.4 Beta™

NTT Confidential

NUMA node

[ PG clients ]

X
|l DRAM
| ——

CPU

[ PG server ]

____________________________________________

*: https://www.postgresaql.org/message-id/C20D38E97BCB33DAD59E3A1%40lab

SDC
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Stored Procedure

3 Improvement ratio using PMEM is improved by

12% compared with using SSD
[tps] ™ 36,449 tps

3’00 . mmmmmmmmmm—g

30,000

25,000

________ | Without Stored

sow 18,396 tPS 21,406 tps Procedure

10,000

20,000

T With Stored
Procedure

5,000

0

Intel® Optane™ SSD PMEM
DC P4800X Series 750GB with DAX FS + PMDK
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Conclusion

a0 Difficult to implement PMEM aware applications
Resizing file with overhead
7 Best practice is to access only fixed-size file

Selecting inappropriate sync function seriously
degrades performance or durability

NTT Confidential

ad Difficult to get valid results in performance evaluation
Avoiding NUMA effect
Avoiding CPUs becoming hotspots
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