
2018 Storage Developer Conference. © Intel. All Rights Reserved. 1

Concurrency on Persistent Memory:
Designing Concurrent Data Structures for Persistent Memory

Sergei Vinogradov
Intel

2018 Storage Developer Conference. © Intel. All Rights Reserved. 2

Legal Disclaimers and Optimization
Notices

Performance results are based on testing as of 09/01/2018 and may not reflect all publicly available security updates. See configuration disclosure for details.
No product can be absolutely secure.
Software and workloads used in performance tests may have been optimized. for performance only on Intel microprocessors. Performance tests, such as
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those
factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated
purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.
INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, the Intel logo, Pentium, Xeon, Core, VTune, OpenVINO, Cilk, are trademarks of Intel Corporation
or its subsidiaries in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.
Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for
more information regarding the specific instruction sets covered by this notice.
Notice revision #20110804

http://www.intel.com/benchmarks
https://software.intel.com/en-us/articles/optimization-notice

2018 Storage Developer Conference. © Intel. All Rights Reserved. 3

Executive Summary

 Challenges of building concurrent data
structures for persistent memory

 Two approaches to design concurrent data
structures for persistent memory

2018 Storage Developer Conference. © Intel. All Rights Reserved. 4

Agenda

 Motivation
 Two approaches for data consistency

 Transaction approach
 Atomic approach

 Concurrent hash map for persistent memory
 Integration with PMEMKV
 Summary

2018 Storage Developer Conference. © Intel. All Rights Reserved. 5

Goal

 Design concurrent data structures for persistent
memory.
Data structure resides in persistent memory.
Operations are thread-safe.
Operations are fault-tolerant.

Data survive unexpected crashes and power failures

2018 Storage Developer Conference. © Intel. All Rights Reserved. 6

Motivation

 PMDK provides low-level API for persistent
memory programmers.

 Developers think in terms of data structures and
algorithms.

2018 Storage Developer Conference. © Intel. All Rights Reserved. 7

What’s Done

 Evaluated two approaches to support data consistency
in concurrent data structures.

 Redesigned Intel® Threading Building Blocks (Intel TBB)
concurrent_hash_map for persistent memory.
 Published as part of PMDK

https://github.com/pmem/libpmemobj-cpp/pull/40

 Integrated our data structures into PMEMKV.

https://github.com/pmem/libpmemobj-cpp/pull/40

2018 Storage Developer Conference. © Intel. All Rights Reserved. 8

Two Approaches for Data Consistency

 Transactions
Define a set of operations to be done

atomically.
 Atomic approach
Atomically switch between consistent states.

2018 Storage Developer Conference. © Intel. All Rights Reserved. 9

Transactions for Data Consistency

 All modifications are done
inside a transaction.

 Write-Ahead Log (WAL) is
used to track modifications.

 For each uncommitted
transaction, consistent state is
restored on restart from WAL.

Transaction scope

2018 Storage Developer Conference. © Intel. All Rights Reserved. 10

Concurrent PMDK Transactions

 PMDK transaction does not
support isolation.
 WAL is per-thread.

 Atomic operations cannot be
used inside PMDK transactions.

 Possible solutions:
 Use critical section.
 Hold lock until transaction

completed.

// Variable a is located in persistent memory
std::atomic<int> a = 0;

Thread 2:

tx_begin();
add_to_log(&a);
++a;
…
tx_commit();

WAL

a = 0

Thread 1:

tx_begin();
add_to_log(&a);
++a;
…
tx_abort();

WAL

a = 0

Incorrect value of the counter is restored from
undo log if thread 1 aborts transaction while

thread 2 successfully commits its changes.

2018 Storage Developer Conference. © Intel. All Rights Reserved. 11

Mutex in Persistent Memory

 Mutex is a volatile entity.
 Unexpected termination may leave mutex in the locked state.
 Mutex must be re-initialized to the unlocked state on each

process restart.
 PMDK solves this issue:

 Persistent mutex
 Unlocked on each process restart.

 Volatile field in a persistent data structure
 Re-initialized on each process restart.

class Foo {
pmem::obj::mutex mtx;

};

class Bar {
pmem::obj::v<std::mutex> m;

};

2018 Storage Developer Conference. © Intel. All Rights Reserved. 12

Atomic Approach for Data Consistency

 Alternative approach to
PMDK transactions

 Custom restore logic
 PMDK atomic allocator
 Manual cache flushes

2018 Storage Developer Conference. © Intel. All Rights Reserved. 13

int main() {
pool_base pop = …;
persistent_ptr<Foo> p = nullptr;
make_persistent_atomic<Foo>(pop, p);
return 0;

}

 PMDK atomic allocator atomically does
the following:
 allocates memory;
 assigns the result to a user-provided

persistent pointer.
 Persistent pointer on the stack cannot

be used.
 Persistent memory leak is possible if a

process is terminated.

PMDK Atomic Memory Allocator

2018 Storage Developer Conference. © Intel. All Rights Reserved. 14

Volatile domain

Persistent domain

3 4 thread 2 51 2

31 2

Lock-Free Algorithms on Persistent Memory

Volatile domain

Persistent domain

thread 1 4

thread 2 5

Compare-and-swap is used to insert
an element to the tail

31 2

31 2

 Memory subsystem consists of:
 Volatile domain - registers, caches
 Persistent domain – DIMMs.

 Changes made by one thread are
visible to other threads before it is
persisted.
 CMPXCHG + CLWB – not atomic

 Restore after an abnormal termination
should take care of such cases.

2018 Storage Developer Conference. © Intel. All Rights Reserved. 15

Transactions vs. Atomic Approach
Transactions Atomic approach

Data
consistency
support

• Natural way to support data
consistency

• PMDK is responsible for data
consistency and data restore after
crash.

• Developer is responsible for data
consistency.

• Custom restore logic is required for
each particular data structure.

Performance
overhead

• Performance overhead to handle
WAL

• Better performance

Concurrency
support

• PMDK transaction does not support
isolation

• Cannot use lock free algorithms

• Suitable for concurrent algorithms

2018 Storage Developer Conference. © Intel. All Rights Reserved. 16

Concurrent Hash Map

 Per-bucket Read-Write lock
 Find() acquires read lock.
 Insert() acquires write lock.

 Insert operation:
 Finds bucket.
 Allocates new node.
 Inserts a new node.

 Lazy restore on bucket access
 Checks new_node pointer first.

RW mutex
new_node

list
RW mutex
new_node

list
RW mutex
new_node

list
RW mutex
new_node

list
Key

Value
Key

Value
null

Key
Value

null

Key
Value

null

Buckets

New Node:
Atomic allocator assigns it to

new_node

2018 Storage Developer Conference. © Intel. All Rights Reserved. 17

PMEMKV

 Embedded Key/Value data store
optimized for persistent memory

 An option to create custom
storage engines

 Usage of db_bench from
RocksDB for benchmarking

https://github.com/pmem/pmemkv

PMDK

kvtree
engine

Your
engine

C/C++ API

btree
engine

Java
Binding

Python
Binding

C/C+
+

App Ruby
Binding

Java
App

Python
App

Ruby
App

https://github.com/pmem/pmemkv

2018 Storage Developer Conference. © Intel. All Rights Reserved. 18

Concurrent Hash Map and PMEMKV

Concurrent hash map is a new storage engine that:
 enables maximum throughput in multithreaded

applications;
 keeps P99 latency flat with a growing number of

threads.

2018 Storage Developer Conference. © Intel. All Rights Reserved. 19

DB_bench Results

-1 5

-1 0

-5

0

5

10

15

20

0

20 0

40 0

60 0

80 0

10 00

12 00

1 2 4 8 12 16
#threads

readrandom

-1 5

-1 0

-5

0

5

10

15

20

0

10 0

20 0

30 0

40 0

50 0

1 2 4 8 12 16
#threads

fillrandom

-1 5

-1 0

-5

0

5

10

15

20

0

20 0

40 0

60 0

80 0

10 00

12 00

1 2 4 8 12 16
#threads

readwhilewriting

Throughput (Ops/sec) – scales with a number of threads

P99 latency (sec/Op) – flat

Results have been projected or simulated using internal Intel analysis or architecture simulation or modeling, and
provided to you for informational purposes. Any differences in your system hardware, software or configuration may
affect your actual performance. Software and workloads used in performance tests may have been optimized for
performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured
using specific computer systems, components, software, operations and functions. Any change to any of those factors
may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other
products. For more complete information visit www.intel.com/benchmarks.

http://www.intel.com/benchmarks

2018 Storage Developer Conference. © Intel. All Rights Reserved. 20

Summary

 Compared two approaches to build concurrent
data structures for persistent memory:
Transactions vs. Atomic approach.

 Designed a concurrent hash map for persistent
memory.

 Enabled concurrency in PMEMKV.

2018 Storage Developer Conference. © Intel. All Rights Reserved. 21

Call to Action

 Try our data structures in your persistent memory
workloads:
https://github.com/pmem/libpmemobj-cpp

 Try PMEMKV in your C/C++, Java*, Python* apps
 Customizable Key/Value data storage:

https://github.com/pmem/pmemkv

 Provide your feedback.

https://github.com/pmem/libpmemobj-cpp
https://github.com/pmem/pmemkv

2018 Storage Developer Conference. © Intel. All Rights Reserved. 22

Thank You

Questions?

	Concurrency on Persistent Memory:�Designing Concurrent Data Structures for Persistent Memory
	Legal Disclaimers and Optimization Notices
	Executive Summary
	Agenda
	Goal	
	Motivation
	What’s Done
	Two Approaches for Data Consistency
	Transactions for Data Consistency
	Concurrent PMDK Transactions
	Mutex in Persistent Memory
	Atomic Approach for Data Consistency
	PMDK Atomic Memory Allocator
	Lock-Free Algorithms on Persistent Memory
	Transactions vs. Atomic Approach
	Concurrent Hash Map
	PMEMKV
	Concurrent Hash Map and PMEMKV
	DB_bench Results
	Summary
	Call to Action
	Thank You

