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Legal Disclaimers and Optimization 
Notices

Performance results are based on testing as of 09/01/2018 and may not reflect all publicly available security updates. See configuration disclosure for details. 
No product can be absolutely secure. 
Software and workloads used in performance tests may have been optimized. for performance only on Intel microprocessors. Performance tests, such as 
SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those 
factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated 
purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.
INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY 
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY 
EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A 
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, the Intel logo, Pentium, Xeon, Core, VTune, OpenVINO, Cilk, are trademarks of Intel Corporation 
or its subsidiaries in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These 
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any 
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. 
Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for 
more information regarding the specific instruction sets covered by this notice. 
Notice revision #20110804

http://www.intel.com/benchmarks
https://software.intel.com/en-us/articles/optimization-notice
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Executive Summary

 Challenges of building concurrent data 
structures for persistent memory

 Two approaches to design concurrent data 
structures for persistent memory
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Agenda

 Motivation
 Two approaches for data consistency

 Transaction approach
 Atomic approach

 Concurrent hash map for persistent memory
 Integration with PMEMKV
 Summary
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Goal

 Design concurrent data structures for persistent 
memory.
Data structure resides in persistent memory.
Operations are thread-safe.
Operations are fault-tolerant.

Data survive unexpected crashes and power failures
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Motivation

 PMDK provides low-level API for persistent 
memory programmers.

 Developers think in terms of data structures and 
algorithms.
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What’s Done

 Evaluated two approaches to support data consistency 
in concurrent data structures.

 Redesigned Intel® Threading Building Blocks (Intel TBB) 
concurrent_hash_map for persistent memory.
 Published as part of PMDK 

https://github.com/pmem/libpmemobj-cpp/pull/40

 Integrated our data structures into PMEMKV.

https://github.com/pmem/libpmemobj-cpp/pull/40
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Two Approaches for Data Consistency

 Transactions
Define a set of operations to be done 

atomically.
 Atomic approach
Atomically switch between consistent states.
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Transactions for Data Consistency

 All modifications are done 
inside a transaction.

 Write-Ahead Log (WAL) is 
used to track modifications.

 For each uncommitted 
transaction, consistent state is 
restored on restart from WAL.

Transaction scope
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Concurrent PMDK Transactions

 PMDK transaction does not 
support isolation.
 WAL is per-thread.

 Atomic operations cannot be 
used inside PMDK transactions.

 Possible solutions:
 Use critical section.
 Hold lock until transaction 

completed.

// Variable a is located in persistent memory
std::atomic<int> a = 0;

Thread 2:

tx_begin();
add_to_log(&a);
++a;
…
tx_commit();

WAL

a = 0

Thread 1:

tx_begin();
add_to_log(&a);
++a;
…
tx_abort();

WAL

a = 0

Incorrect value of the counter is restored from 
undo log if thread 1 aborts transaction while 

thread 2 successfully commits its changes.
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Mutex in Persistent Memory

 Mutex is a volatile entity.
 Unexpected termination may leave mutex in the locked state.
 Mutex must be re-initialized to the unlocked state on each 

process restart.
 PMDK solves this issue:

 Persistent mutex 
 Unlocked on each process restart.

 Volatile field in a persistent data structure
 Re-initialized on each process restart.

class Foo {
pmem::obj::mutex mtx;

};

class Bar {
pmem::obj::v<std::mutex> m;

};
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Atomic Approach for Data Consistency

 Alternative approach to 
PMDK transactions

 Custom restore logic
 PMDK atomic allocator
 Manual cache flushes
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int main() {
pool_base pop = …;
persistent_ptr<Foo> p = nullptr;
make_persistent_atomic<Foo>(pop, p);
return 0;

}

 PMDK atomic allocator atomically does 
the following:
 allocates memory; 
 assigns the result to a user-provided 

persistent pointer. 
 Persistent pointer on the stack cannot 

be used.
 Persistent memory leak is possible if a 

process is terminated.

PMDK Atomic Memory Allocator 
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Volatile domain

Persistent domain

3 4 thread 2 51 2

31 2

Lock-Free Algorithms on Persistent Memory

Volatile domain

Persistent domain

thread 1 4

thread 2 5

Compare-and-swap is used to insert 
an element to the tail

31 2

31 2

 Memory subsystem consists of:
 Volatile domain - registers, caches
 Persistent domain – DIMMs.

 Changes made by one thread are 
visible to other threads before it is 
persisted.
 CMPXCHG + CLWB – not atomic

 Restore after an abnormal termination 
should take care of such cases.
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Transactions vs. Atomic Approach
Transactions Atomic approach

Data 
consistency 
support

• Natural way to support data 
consistency

• PMDK is responsible for data 
consistency and data restore after 
crash.

• Developer is responsible for data 
consistency.

• Custom restore logic is required for 
each particular data structure.

Performance 
overhead

• Performance overhead to handle 
WAL

• Better performance

Concurrency 
support

• PMDK transaction does not support 
isolation

• Cannot use lock free algorithms

• Suitable for concurrent algorithms
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Concurrent Hash Map

 Per-bucket Read-Write lock
 Find() acquires read lock.
 Insert() acquires write lock.

 Insert operation:
 Finds bucket.
 Allocates new node.
 Inserts a new node.

 Lazy restore on bucket access
 Checks new_node pointer first.

RW mutex
new_node

list
RW mutex
new_node

list
RW mutex
new_node

list
RW mutex
new_node

list
Key

Value
Key

Value
null

Key
Value

null

Key
Value

null

Buckets

New Node:
Atomic allocator assigns it to 

new_node
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PMEMKV

 Embedded Key/Value data store 
optimized for persistent memory

 An option to create custom 
storage engines

 Usage of db_bench from 
RocksDB for benchmarking 

https://github.com/pmem/pmemkv

PMDK

kvtree
engine

Your 
engine

C/C++ API

btree
engine

Java
Binding

Python
Binding

C/C+
+

App Ruby
Binding

Java
App

Python
App

Ruby
App

https://github.com/pmem/pmemkv
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Concurrent Hash Map and PMEMKV

Concurrent hash map is a new storage engine that:
 enables maximum throughput in multithreaded 

applications;
 keeps P99 latency flat with a growing number of 

threads. 
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DB_bench Results
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Throughput (Ops/sec) – scales with a number of threads

P99 latency (sec/Op) – flat

Results have been projected or simulated using internal Intel analysis or architecture simulation or modeling, and 
provided to you for informational purposes. Any differences in your system hardware, software or configuration may 
affect your actual performance. Software and workloads used in performance tests may have been optimized for 
performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured 
using specific computer systems, components, software, operations and functions. Any change to any of those factors 
may cause the results to vary. You should consult other information and performance tests to assist you in fully 
evaluating your contemplated purchases, including the performance of that product when combined with other 
products. For more complete information visit www.intel.com/benchmarks.

http://www.intel.com/benchmarks
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Summary

 Compared two approaches to build concurrent 
data structures for persistent memory:
Transactions vs. Atomic approach.

 Designed a concurrent hash map for persistent 
memory.

 Enabled concurrency in PMEMKV.
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Call to Action

 Try our data structures in your persistent memory 
workloads:
https://github.com/pmem/libpmemobj-cpp

 Try PMEMKV in your C/C++, Java*, Python* apps
 Customizable Key/Value data storage:

https://github.com/pmem/pmemkv

 Provide your feedback.

https://github.com/pmem/libpmemobj-cpp
https://github.com/pmem/pmemkv
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Thank You

Questions?
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