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Outline

 SNIA NVMP TWG activities
 Remote Access for High Availability work
 RDMA requirements and extensions
 Current and future TWG remote access focus
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NVM Programming Model TWG - Mission

 Accelerate the availability of software that enables 
Persistent Memory (PM) hardware.
 Hardware includes SSD’s and PM
 Software spans applications and OS’s

 Create the NVM Programming Model
 Describes application-visible behaviors
 Allows API’s to align with OS’s
 Describes opportunities in networks and processors
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SNIA NVM Programming Model
 Version 1.2 approved by SNIA in June 2017
 Expose new block and file features to applications

 Atomicity capability and granularity
 Thin provisioning management

 Use of memory mapped files for persistent memory
 Existing abstraction that can act as a bridge
 Limits the scope of application re-invention
 Open source implementations available

 Programming Model, not API
 Described in terms of attributes, actions and use cases
 Implementations map actions and attributes to API’s

https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf
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NVM Programming Model modes
IO Persistent Memory

User View NVM.FILE NVM.PM.FILE

Kernel Protected NVM.BLOCK NVM.PM.VOLUME

Media Type Disk Drive Persistent Memory

NVDIMM Disk-Like Memory-Like

Block Mode Innovation Emerging PM Technologies

The current version (1.2) of the specification is available at
https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf

5

 Volume and PM modes enable Load/Store/Move
 Data is loaded into or stored from processor 

registers
 Processor waits for data during instruction
 No status returned – errors generate exceptions

 Block and File modes use IO
 Data is read or written using RAM buffers
 Software controls how to wait (context switch 

or poll)
 Status is explicitly checked by software

https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf
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Remote Access for HA
 History

 Remote Access for High Availability white paper published 2016
 NVM Programming Model 1.2 published June 2017

 Major new installment on error handling
 Optimized Flush Allowed
 Deep Flush

 NVM Programming Model Specification 1.3 in development
 Update specification to reflect learning from implementations
 Incorporate learning from remote access white paper

 Asynchronous Flush
 Remote persistence ordering, error handling

 Remote Access Collaboration with Open Fabrics Alliance OFIWG
 PM Remote Access for HA V1.1 in development
 Expand remote access use case enumeration
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Persistent Memory (PM) Modes, +Remote
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PM Remote Access for HA

 NVMP TWG-developed interface for remote Pmem
 Maximize alignment with local PMEM interface
 Take remote environment into account

 Including RDMA semantics and restrictions
 Analyze the error cases

 As always, “the hard part”
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Outline of “NVM PM Remote Access for HA”
 1 Purpose
 2 Scope
 3 Memory Access Hardware Taxonomy
 4 Recoverability Definitions

 Durability vs Availability
 Consistency
 Recovery
 Integrity

 5 HA Extensions to NVM.PM.FILE
 6 RDMA for HA
 7 RDMA Security
 8 Requirements Summary
 Appendices

 Workload generation and measurement
 HA protocol flow alternatives
 Remote atomicity considerations
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Map and Sync
 Map (local PMEM)

 Associates memory addresses with open file
 Caller may request specific address

 Sync (local PMEM)
 Flush CPU cache for indicated range
 Additional Sync types
 Optimized Flush – multiple ranges from user space
 Optimized Flush and Verify – Optimized flush with verification from media

 Warning!  Sync does not guarantee order
 Parts of CPU cache may be flushed out of order
 This may occur before the sync action is taken by the application
 Sync only guarantees that all data in the indicated range has been flushed some time before the 

sync completes
 All the above are true remotely, but

 Remote addresses are not “mapped”
 Stores do not magically become RDMA Writes

 Flushing applies to RDMA, network and i/o pipeline (not simply CPU)
 An asynchronous flush is needed for efficiency!
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Failure Atomicity
 Current processor + memory systems

 Guarantee inter-process consistency (SMP)
 But only provide limited atomicity with respect to failure

 System reset/restart/crash
 Power Failure
 Memory Failure

 Failure atomicity is processor architecture specific
 Processors provide failure atomicity of aligned fundamental data types
 Fundamental data types include pointers and integers
 PM programs use these to create larger atomic updates or transactions
 Fallback is an additional checksum or CRC

 Failure atomicity is further impacted by network
 Alignment restrictions are potentially different for bus-attached devices
 Network and PCI Express packetization impact ordering and write boundaries
 Network failures reflected in new scenarios
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Consistency for recoverability
 Application level goal is recovery from failure

 Requires robust local and remote error handling
 High Availability (as opposed to High Durability) requires application 

involvement.
 Consistency is an application specific constraint

 Uncertainty of data state after failure
 Crash consistency
 Higher order consistency points

 Atomicity of Aligned Fundamental Data Types
 Required for consistency if additional protection is to be avoided
 Failure atomicity as opposed to inter-process atomicity
 Further implications when access is remote

 ► Application Involvement Is Required for High Availability
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Key Remotable NVMP interfaces

 Directly mappable to RDMA (with extensions):
 In NVMP 1.2:

OPTIMIZED_FLUSH
OPTIMIZED_FLUSH_AND_VERIFY

 Under discussion:
 ASYNC_FLUSH (initiates flushing)
 ASYNC_DRAIN (waits for flush completion, persist fence)
Ordering (write-after-flush)

 Other NVM PM methods remotable via upper layer(s)
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Remote access for HA ladder diagram
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Asynchronous Flush
 Separates “Flush” and “Drain” stages
 Allows early scheduling of Writes without blocking

 “Giddy-up”
 Important for efficient concurrent processing
 For both applications and middleware libs

 Drain allows application to ensure persistence
 Less data remaining to flush: less wait latency

 Error conditions require careful analysis
 Subject of NVMP TWG current work
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Under Development
 Visibility vs Persistence

 E.g.: Compare and Swap in PMEM does not necessarily yield a persistent lock!
 “Consumers of visibility” vs “Consumers of persistence”

 Failure semantic for consumers of persistence
 Assurance of persistence integrity

 Explicit integrity semantic, as opposed to current Best-effort
 Scope of flush

 Conceptual “store barrier” or “order nexus”
 Streams of stores, which are later flushed to ensure persistence
 Flush hints (ASYNC_FLUSH)
 Modeling these in programming interface, and protocol
 Understanding, and guiding, platform implementation
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Remote Persistent Memory - RDMA
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RDMA Protocols
 RDMA adapters provide connection-oriented ordered, reliable 

operations
 Memory registration provides “handle” to enable remote 

access
 Triplet { handle, offset, length } describes remote buffer(s)
 Send, RDMA Read, RDMA Write (and others) act on buffers
 Example RDMA protocols:

 iWARP
 RoCE, RoCEv2
 InfiniBand
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RDMA Protocols
 Need a remote guarantee of Persistence

 In support of OptimizedFlush()
 RDMA Write alone is not sufficient for this semantic

 Guarantees remote visibility, but not final PM residency (durability)
 Does not guarantee ordered delivery w.r.t. other operations (“post” only)

 An extension is desired
 Proposed “RDMA Commit”, a.k.a. “RDMA Flush”

 Executes like RDMA Read
 Ordered, Flow controlled, acknowledged
 Initiator requests specific byte range to be made durable
 Responder acknowledges only when durability complete
 Strong consensus on these basics
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RDMA Flush (concept)
 New wire operation, and new verb
 Implementable in iWARP and IB/RoCE
 Initiating RNIC provides region, other commit parameters

 Under control of local API at client/initiator
 Receiving RNIC queues operation to proceed in-order

 Similar to current RDMA Read or Atomic processing
 Subject to flow control and ordering

 RNIC pushes pending writes to targeted region
 Alternatively, NIC may simply opt to push all writes, or all writes on this queue pair

 RNIC performs any necessary PM commit
 Possibly interrupting CPU in current architectures
 Possibly implementing platform “workarounds” (cache disable, etc)
 Future (highly desirable to avoid latency) perform via PCIe operation(s)

 RNIC responds when durability of specified region is assured
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Workload: Basic Replication
 Simple replication (mirroring) with writes and flushes

 Write, optionally more Writes, OPTIMIZED_FLUSH
No overwrite
No ordering dependency (but see following 

workloads)
No completions at data sink
 Pipelined (no “bubbles”)
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Writes and Flush
(OPTIMIZED_FLUSH and ASYNC_FLUSH)
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Workload: Log Writer
(Filesystem)

 For (ever)
{ Write log record, Commit }, { Write log pointer }

 Latency is critical
 Log pointer cannot be placed until log record is successfully made durable

 Log pointer is the validity indicator for the log record
 i.e., Transaction model

 Log records are eventually retired, buffer is circular
 Protocol implications:

 Must ensure successful commit (e.g. ASYNC_DRAIN)
 Potentially introduces a pipeline bubble – very bad for throughput and overall latency
 Desire an ordering between Commit and second Write to avoid this

 Proposed solution: RDMA “Atomic Write”
 Special Write which executes “like a Read” – ordered with other non-posted operations

 Specific size and alignment restrictions
 Being discussed in Standards orgs (IETF, IBTA)
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Write, Flush and Write-after-Flush
(ordered)
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Workload: Paranoid Log Writer
(Remote Data Integrity)

 Assuming we have an RDMA Write + RDMA Commit
 And the Writes + Commit all complete (with success or failure)
 How does the initiator know the data is intact?

 Or in case of failure, which data is not intact?
 BEFORE completing the transaction (e.g. writing the log pointer)

 Possibilities:
 Reading back

 extremely undesirable (and possibly not actually reading media!)
 Signaling upper layer

 high overhead
 Upper layer possibly unavailable (the “Memory-Only Appliance”!)

 Other?
 Same question applies also to:

 Array “scrub” (verifying existing data)
 Storage management and recovery (rebuild)
 etc
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RDMA “VERIFY”
 Concept: add integrity hashes to a new, queued, operation
 Hash algorithms to be negotiated by upper layers
 Hashing implemented in RNIC or Library “implementation”

 Which could be in
 Platform, e.g. storage device itself
 RNIC hardware/firmware, e.g. RNIC performs readback/integrity computation
 Other hardware on target platform, e.g. chipset, memory controller
 Software, e.g. target CPU

 Ideally, as efficiently as possible
 Semantic:

 Source computes expected hash of region, sends to target
 Target computes and compares

 If matches, returns computed hash value as “success”
 If mismatches, optionally:

 Return computed hash value (scrub/rebuild scenario)
 OR
 Break the connection with a hash-verify-mismatch code

 Which fences any subsequent operations, and forces recovery
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Write, Flush and Verify 
(OPTIMIZED_FLUSH_AND_VERIFY)

Flush
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RDMA Extension Implications on 
Programming Model
 Strengthens need for ASYNC_FLUSH
 Increased imprecision of errors
RDMA connection is simply broken

 Need for bubbling up AtomicWrite completion?
 Asynchronous Verify indication?
 Verify Fail imprecision in connection-break mode
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Ongoing NVMP TWG work
 Core NVM PM v1.3 update

 Current work in progress (in the NVMP TWG)
 Asynchronous Flush
 Incorporate implementation learnings

 Optimized Flush, Deep Flush, Flush on Fail
 Interaction between NVMP and C memory model (!)
 Visibility versus Persistence

 Continue Remote Access for HA work
 Greater RDMA mapping detail
 Efficient remote programming interface models
 RDMA and platform requirements clarified
 Errors, error handling, error recovery in remote scenario
 Collaboration with Open Fabrics Alliance OFI WG

 Scope of flush, flush barriers, analysis
 “Flush on Fail Fail” (failure of persistence) analysis
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Thank you!

Questions?

SNIA NVM Programming TWG:
https://www.snia.org/forums/sssi/nvmp

PM Programming Model:
https://www.snia.org/tech_activities/standards/curr_standards/npm

PM Remote Access for HA (and other papers): 
https://www.snia.org/tech_activities/standards/whitepapers

https://www.snia.org/forums/sssi/nvmp
https://www.snia.org/tech_activities/standards/curr_standards/npm
https://www.snia.org/tech_activities/standards/whitepapers
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