
2018 Storage Developer Conference. © SNIA. All Rights Reserved. 1

Remote Persistent Memory
SNIA Nonvolatile Memory Programming TWG

Tom Talpey
Microsoft

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 2

Outline

 SNIA NVMP TWG activities
 Remote Access for High Availability work
 RDMA requirements and extensions
 Current and future TWG remote access focus

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 3

NVM Programming Model TWG - Mission

 Accelerate the availability of software that enables
Persistent Memory (PM) hardware.
 Hardware includes SSD’s and PM
 Software spans applications and OS’s

 Create the NVM Programming Model
 Describes application-visible behaviors
 Allows API’s to align with OS’s
 Describes opportunities in networks and processors

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 4

SNIA NVM Programming Model
 Version 1.2 approved by SNIA in June 2017
 Expose new block and file features to applications

 Atomicity capability and granularity
 Thin provisioning management

 Use of memory mapped files for persistent memory
 Existing abstraction that can act as a bridge
 Limits the scope of application re-invention
 Open source implementations available

 Programming Model, not API
 Described in terms of attributes, actions and use cases
 Implementations map actions and attributes to API’s

https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 5

NVM Programming Model modes
IO Persistent Memory

User View NVM.FILE NVM.PM.FILE

Kernel Protected NVM.BLOCK NVM.PM.VOLUME

Media Type Disk Drive Persistent Memory

NVDIMM Disk-Like Memory-Like

Block Mode Innovation Emerging PM Technologies

The current version (1.2) of the specification is available at
https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf

5

 Volume and PM modes enable Load/Store/Move
 Data is loaded into or stored from processor

registers
 Processor waits for data during instruction
 No status returned – errors generate exceptions

 Block and File modes use IO
 Data is read or written using RAM buffers
 Software controls how to wait (context switch

or poll)
 Status is explicitly checked by software

https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 6

Remote Access for HA
 History

 Remote Access for High Availability white paper published 2016
 NVM Programming Model 1.2 published June 2017

 Major new installment on error handling
 Optimized Flush Allowed
 Deep Flush

 NVM Programming Model Specification 1.3 in development
 Update specification to reflect learning from implementations
 Incorporate learning from remote access white paper

 Asynchronous Flush
 Remote persistence ordering, error handling

 Remote Access Collaboration with Open Fabrics Alliance OFIWG
 PM Remote Access for HA V1.1 in development
 Expand remote access use case enumeration

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 7

Persistent Memory (PM) Modes, +Remote

Remote Peer

PM Aware Apps

U
se

r m
od

e
Ke

rn
el

 m
od

e

PM Aware File
Systems

PM capable Driver

PM Device

NVM.PM.FILE Mode

PM VOLUME Mode

File APIs M
em

ory load/store

RDMA NIC

RDMA
Operations

RDMA NIC

PM Device

RDMA Data

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 8

PM Remote Access for HA

 NVMP TWG-developed interface for remote Pmem
 Maximize alignment with local PMEM interface
 Take remote environment into account

 Including RDMA semantics and restrictions
 Analyze the error cases

 As always, “the hard part”

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 9

Outline of “NVM PM Remote Access for HA”
 1 Purpose
 2 Scope
 3 Memory Access Hardware Taxonomy
 4 Recoverability Definitions

 Durability vs Availability
 Consistency
 Recovery
 Integrity

 5 HA Extensions to NVM.PM.FILE
 6 RDMA for HA
 7 RDMA Security
 8 Requirements Summary
 Appendices

 Workload generation and measurement
 HA protocol flow alternatives
 Remote atomicity considerations

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 10

Map and Sync
 Map (local PMEM)

 Associates memory addresses with open file
 Caller may request specific address

 Sync (local PMEM)
 Flush CPU cache for indicated range
 Additional Sync types
 Optimized Flush – multiple ranges from user space
 Optimized Flush and Verify – Optimized flush with verification from media

 Warning! Sync does not guarantee order
 Parts of CPU cache may be flushed out of order
 This may occur before the sync action is taken by the application
 Sync only guarantees that all data in the indicated range has been flushed some time before the

sync completes
 All the above are true remotely, but

 Remote addresses are not “mapped”
 Stores do not magically become RDMA Writes

 Flushing applies to RDMA, network and i/o pipeline (not simply CPU)
 An asynchronous flush is needed for efficiency!

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 11

Failure Atomicity
 Current processor + memory systems

 Guarantee inter-process consistency (SMP)
 But only provide limited atomicity with respect to failure

 System reset/restart/crash
 Power Failure
 Memory Failure

 Failure atomicity is processor architecture specific
 Processors provide failure atomicity of aligned fundamental data types
 Fundamental data types include pointers and integers
 PM programs use these to create larger atomic updates or transactions
 Fallback is an additional checksum or CRC

 Failure atomicity is further impacted by network
 Alignment restrictions are potentially different for bus-attached devices
 Network and PCI Express packetization impact ordering and write boundaries
 Network failures reflected in new scenarios

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 12

Consistency for recoverability
 Application level goal is recovery from failure

 Requires robust local and remote error handling
 High Availability (as opposed to High Durability) requires application

involvement.
 Consistency is an application specific constraint

 Uncertainty of data state after failure
 Crash consistency
 Higher order consistency points

 Atomicity of Aligned Fundamental Data Types
 Required for consistency if additional protection is to be avoided
 Failure atomicity as opposed to inter-process atomicity
 Further implications when access is remote

 ► Application Involvement Is Required for High Availability

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 13

Key Remotable NVMP interfaces

 Directly mappable to RDMA (with extensions):
 In NVMP 1.2:

OPTIMIZED_FLUSH
OPTIMIZED_FLUSH_AND_VERIFY

 Under discussion:
 ASYNC_FLUSH (initiates flushing)
 ASYNC_DRAIN (waits for flush completion, persist fence)
Ordering (write-after-flush)

 Other NVM PM methods remotable via upper layer(s)

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 14

Remote access for HA ladder diagram
App: SW PeerA:

Host SW
PeerANIC:

RNic
PeerBNIC:

RNic
PeerBPM:

PM
PeerB:

Host SW

Optimized
Flush RDMAWrite

RDMAWrite

Write

RDMAWrite

Write

RDMAWrite

Flush

Flush

Flush

1

2

3

RDMAWrite

Flush
RDMAWrite

Write

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 15

Asynchronous Flush
 Separates “Flush” and “Drain” stages
 Allows early scheduling of Writes without blocking

 “Giddy-up”
 Important for efficient concurrent processing
 For both applications and middleware libs

 Drain allows application to ensure persistence
 Less data remaining to flush: less wait latency

 Error conditions require careful analysis
 Subject of NVMP TWG current work

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 16

Under Development
 Visibility vs Persistence

 E.g.: Compare and Swap in PMEM does not necessarily yield a persistent lock!
 “Consumers of visibility” vs “Consumers of persistence”

 Failure semantic for consumers of persistence
 Assurance of persistence integrity

 Explicit integrity semantic, as opposed to current Best-effort
 Scope of flush

 Conceptual “store barrier” or “order nexus”
 Streams of stores, which are later flushed to ensure persistence
 Flush hints (ASYNC_FLUSH)
 Modeling these in programming interface, and protocol
 Understanding, and guiding, platform implementation

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 17

Remote Persistent Memory - RDMA

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 18

RDMA Protocols
 RDMA adapters provide connection-oriented ordered, reliable

operations
 Memory registration provides “handle” to enable remote

access
 Triplet { handle, offset, length } describes remote buffer(s)
 Send, RDMA Read, RDMA Write (and others) act on buffers
 Example RDMA protocols:

 iWARP
 RoCE, RoCEv2
 InfiniBand

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 19

RDMA Protocols
 Need a remote guarantee of Persistence

 In support of OptimizedFlush()
 RDMA Write alone is not sufficient for this semantic

 Guarantees remote visibility, but not final PM residency (durability)
 Does not guarantee ordered delivery w.r.t. other operations (“post” only)

 An extension is desired
 Proposed “RDMA Commit”, a.k.a. “RDMA Flush”

 Executes like RDMA Read
 Ordered, Flow controlled, acknowledged
 Initiator requests specific byte range to be made durable
 Responder acknowledges only when durability complete
 Strong consensus on these basics

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 20

RDMA Flush (concept)
 New wire operation, and new verb
 Implementable in iWARP and IB/RoCE
 Initiating RNIC provides region, other commit parameters

 Under control of local API at client/initiator
 Receiving RNIC queues operation to proceed in-order

 Similar to current RDMA Read or Atomic processing
 Subject to flow control and ordering

 RNIC pushes pending writes to targeted region
 Alternatively, NIC may simply opt to push all writes, or all writes on this queue pair

 RNIC performs any necessary PM commit
 Possibly interrupting CPU in current architectures
 Possibly implementing platform “workarounds” (cache disable, etc)
 Future (highly desirable to avoid latency) perform via PCIe operation(s)

 RNIC responds when durability of specified region is assured

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 21

Workload: Basic Replication
 Simple replication (mirroring) with writes and flushes

 Write, optionally more Writes, OPTIMIZED_FLUSH
No overwrite
No ordering dependency (but see following

workloads)
No completions at data sink
 Pipelined (no “bubbles”)

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 22

Writes and Flush
(OPTIMIZED_FLUSH and ASYNC_FLUSH)

Flush

Host
SW

Host
PMEMNIC NIC

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 23

Workload: Log Writer
(Filesystem)

 For (ever)
{ Write log record, Commit }, { Write log pointer }

 Latency is critical
 Log pointer cannot be placed until log record is successfully made durable

 Log pointer is the validity indicator for the log record
 i.e., Transaction model

 Log records are eventually retired, buffer is circular
 Protocol implications:

 Must ensure successful commit (e.g. ASYNC_DRAIN)
 Potentially introduces a pipeline bubble – very bad for throughput and overall latency
 Desire an ordering between Commit and second Write to avoid this

 Proposed solution: RDMA “Atomic Write”
 Special Write which executes “like a Read” – ordered with other non-posted operations

 Specific size and alignment restrictions
 Being discussed in Standards orgs (IETF, IBTA)

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 24

Write, Flush and Write-after-Flush
(ordered)

Flush

Host
SW

Host
PMEMNIC NIC

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 25

Workload: Paranoid Log Writer
(Remote Data Integrity)

 Assuming we have an RDMA Write + RDMA Commit
 And the Writes + Commit all complete (with success or failure)
 How does the initiator know the data is intact?

 Or in case of failure, which data is not intact?
 BEFORE completing the transaction (e.g. writing the log pointer)

 Possibilities:
 Reading back

 extremely undesirable (and possibly not actually reading media!)
 Signaling upper layer

 high overhead
 Upper layer possibly unavailable (the “Memory-Only Appliance”!)

 Other?
 Same question applies also to:

 Array “scrub” (verifying existing data)
 Storage management and recovery (rebuild)
 etc

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 26

RDMA “VERIFY”
 Concept: add integrity hashes to a new, queued, operation
 Hash algorithms to be negotiated by upper layers
 Hashing implemented in RNIC or Library “implementation”

 Which could be in
 Platform, e.g. storage device itself
 RNIC hardware/firmware, e.g. RNIC performs readback/integrity computation
 Other hardware on target platform, e.g. chipset, memory controller
 Software, e.g. target CPU

 Ideally, as efficiently as possible
 Semantic:

 Source computes expected hash of region, sends to target
 Target computes and compares

 If matches, returns computed hash value as “success”
 If mismatches, optionally:

 Return computed hash value (scrub/rebuild scenario)
 OR
 Break the connection with a hash-verify-mismatch code

 Which fences any subsequent operations, and forces recovery

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 27

Write, Flush and Verify
(OPTIMIZED_FLUSH_AND_VERIFY)

Flush

Host
SW

Host
PMEMNIC NIC

Verify

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 28

RDMA Extension Implications on
Programming Model
 Strengthens need for ASYNC_FLUSH
 Increased imprecision of errors
RDMA connection is simply broken

 Need for bubbling up AtomicWrite completion?
 Asynchronous Verify indication?
 Verify Fail imprecision in connection-break mode

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 29

Ongoing NVMP TWG work
 Core NVM PM v1.3 update

 Current work in progress (in the NVMP TWG)
 Asynchronous Flush
 Incorporate implementation learnings

 Optimized Flush, Deep Flush, Flush on Fail
 Interaction between NVMP and C memory model (!)
 Visibility versus Persistence

 Continue Remote Access for HA work
 Greater RDMA mapping detail
 Efficient remote programming interface models
 RDMA and platform requirements clarified
 Errors, error handling, error recovery in remote scenario
 Collaboration with Open Fabrics Alliance OFI WG

 Scope of flush, flush barriers, analysis
 “Flush on Fail Fail” (failure of persistence) analysis

2018 Storage Developer Conference. © SNIA. All Rights Reserved. 30

Thank you!

Questions?

SNIA NVM Programming TWG:
https://www.snia.org/forums/sssi/nvmp

PM Programming Model:
https://www.snia.org/tech_activities/standards/curr_standards/npm

PM Remote Access for HA (and other papers):
https://www.snia.org/tech_activities/standards/whitepapers

https://www.snia.org/forums/sssi/nvmp
https://www.snia.org/tech_activities/standards/curr_standards/npm
https://www.snia.org/tech_activities/standards/whitepapers

	Remote Persistent Memory�SNIA Nonvolatile Memory Programming TWG
	Outline
	NVM Programming Model TWG - Mission
	SNIA NVM Programming Model
	NVM Programming Model modes
	Remote Access for HA
	Persistent Memory (PM) Modes, +Remote
	PM Remote Access for HA
	Outline of “NVM PM Remote Access for HA”
	Map and Sync
	Failure Atomicity
	Consistency for recoverability
	Key Remotable NVMP interfaces
	Remote access for HA ladder diagram
	Asynchronous Flush
	Under Development
	Remote Persistent Memory - RDMA
	RDMA Protocols
	RDMA Protocols	
	RDMA Flush (concept)
	Workload: Basic Replication
	Writes and Flush�(OPTIMIZED_FLUSH and ASYNC_FLUSH)
	Workload: Log Writer�(Filesystem)
	Write, Flush and Write-after-Flush�(ordered)
	Workload: Paranoid Log Writer�(Remote Data Integrity)
	RDMA “VERIFY”
	Write, Flush and Verify (OPTIMIZED_FLUSH_AND_VERIFY)
	RDMA Extension Implications on Programming Model
	Ongoing NVMP TWG work
	Thank you!��Questions?

