

Designing High-Performance Non-Volatile Memory-aware RDMA Communication Protocols for Big Data Processing

Talk at Storage Developer Conference | SNIA 2018

by

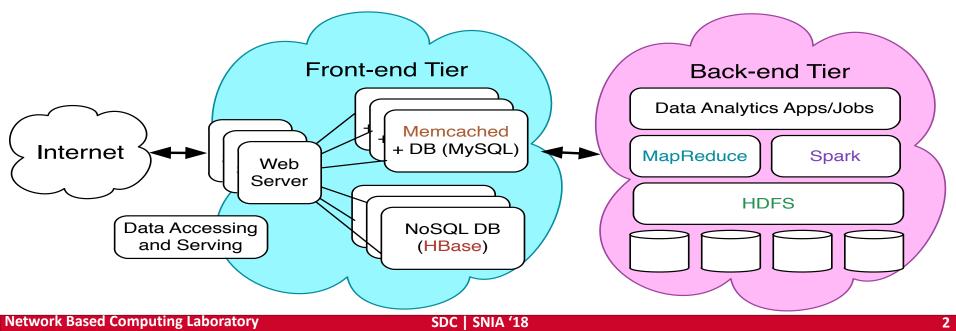
Xiaoyi Lu

The Ohio State University

E-mail: luxi@cse.ohio-state.edu

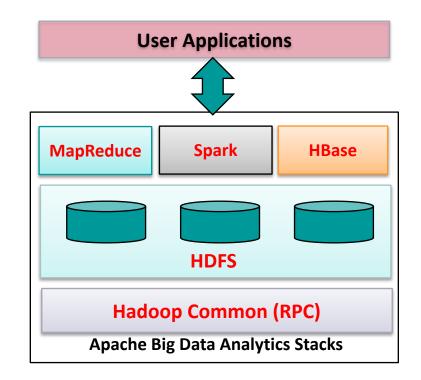
http://www.cse.ohio-state.edu/~luxi

Dhabaleswar K. (DK) Panda


The Ohio State University

E-mail: panda@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~panda


Big Data Management and Processing on Modern Clusters

- Substantial impact on designing and utilizing data management and processing systems in multiple tiers
 - Front-end data accessing and serving (Online)
 - Memcached + DB (e.g. MySQL), HBase
 - Back-end data analytics (Offline)
 - HDFS, MapReduce, Spark

Big Data Processing with Apache Big Data Analytics Stacks

- Major components included:
 - MapReduce (Batch)
 - Spark (Iterative and Interactive)
 - HBase (Query)
 - HDFS (Storage)
 - RPC (Inter-process communication)
- Underlying Hadoop Distributed File System (HDFS) used by MapReduce, Spark, HBase, and many others
- Model scales but high amount of communication and I/O can be further optimized!

Drivers of Modern HPC Cluster and Data Center Architecture

Multi-/Many-core **Processors**

High Performance Interconnects -InfiniBand (with SR-IOV) <1usec latency. 200Gbps Bandwidth>

Multi-core/many-core technologies

Accelerators / Coprocessors high compute density, high performance/watt >1 TFlop DP on a chip

SSD, NVMe-SSD, NVRAM

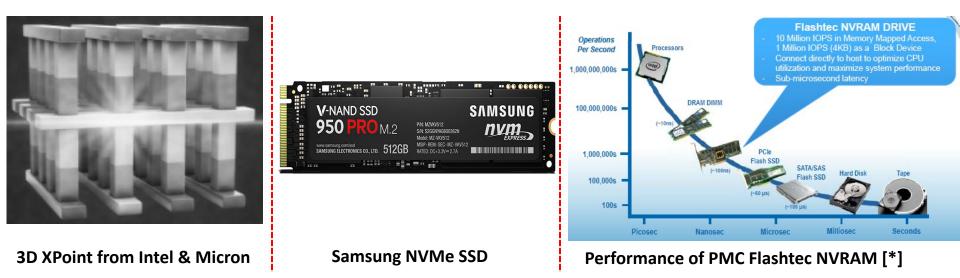
- Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)
 - Single Root I/O Virtualization (SR-IOV)
- NVM and NVMe-SSD
- Accelerators (NVIDIA GPGPUs and FPGAs)

The High-Performance Big Data (HiBD) Project

- RDMA for Apache Spark
- RDMA for Apache Hadoop 2.x (RDMA-Hadoop-2.x)
 - Plugins for Apache, Hortonworks (HDP) and Cloudera (CDH) Hadoop distributions
- RDMA for Apache HBase
- RDMA for Memcached (RDMA-Memcached)
- RDMA for Apache Hadoop 1.x (RDMA-Hadoop)
- OSU HiBD-Benchmarks (OHB)
 - HDFS, Memcached, HBase, and Spark Micro-benchmarks
- <u>http://hibd.cse.ohio-state.edu</u>
- Users Base: 290 organizations from 34 countries
- More than 27,800 downloads from the project site

Big Data

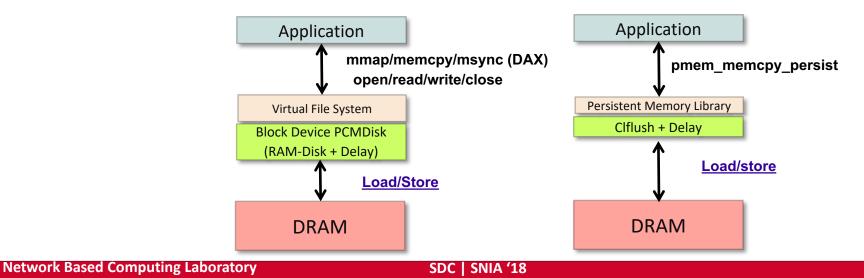
SDC | SNIA '18


Available for InfiniBand and RoCE Available for x86 and OpenPOWER

Significant performance improvement with 'RDMA+DRAM' compared to default Sockets-based designs; How about RDMA+NVRAM?

Network Based Computing Laboratory

Non-Volatile Memory (NVM) and NVMe-SSD

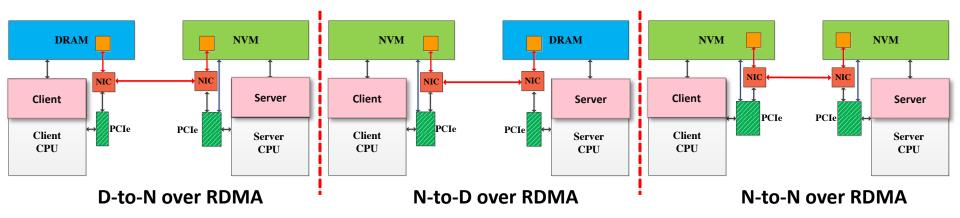


- Non-Volatile Memory (NVM) provides byte-addressability with persistence
- The huge explosion of data in diverse fields require fast analysis and storage
- NVMs provide the opportunity to build high-throughput storage systems for data-intensive applications
- Storage technology is moving rapidly towards NVM

[*] http://www.enterprisetech.com/2014/08/06/ flashtec-nvram-15-million-iops-sub-microsecond- latency/

NVRAM Emulation based on DRAM

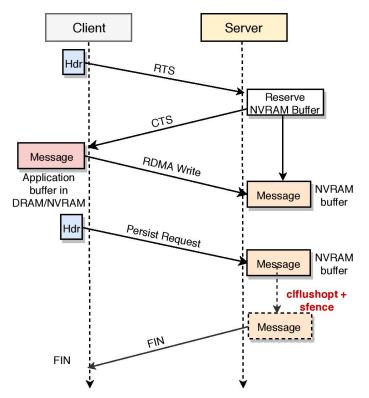
- Popular methods employed by recent works to emulate NVRAM performance model over DRAM
- Two ways:
 - Emulate byte-addressable NVRAM over DRAM
 - Emulate block-based NVM device over DRAM

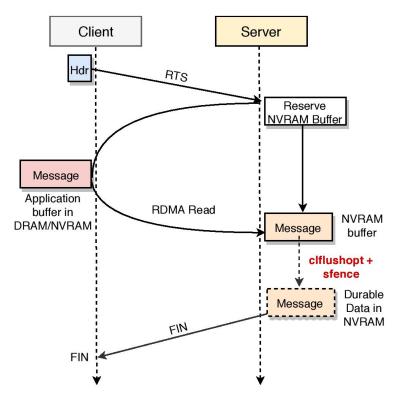


Presentation Outline

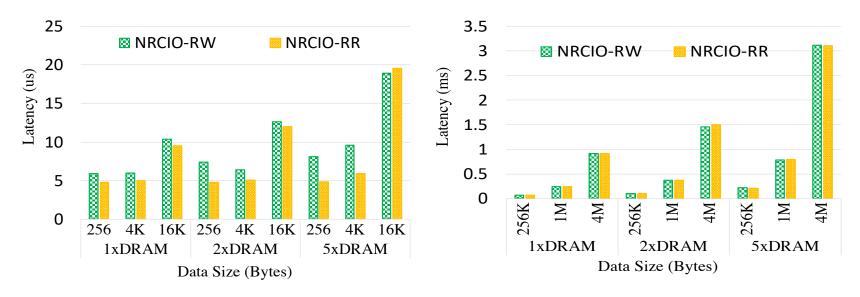
- NRCIO: NVM-aware RDMA-based Communication and I/O Schemes
- NRCIO for Big Data Analytics
- NVMe-SSD based Big Data Analytics
- Conclusion and Q&A

Design Scope (NVM for RDMA)

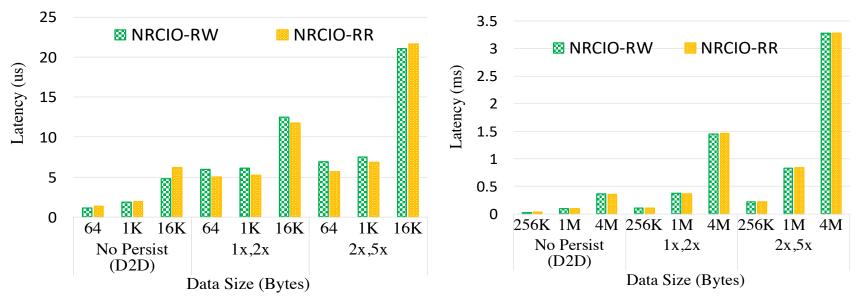

D-to-D over RDMA: Communication buffers for client and server are allocated in DRAM (Common)


D-to-N over RDMA: Communication buffers for client are allocated in DRAM; Server uses NVM N-to-D over RDMA: Communication buffers for client are allocated in NVM; Server uses DRAM N-to-N over RDMA: Communication buffers for client and server are allocated in NVM

NVRAM-aware RDMA-based Communication in NRCIO


NRCIO RDMA Write over NVRAM

NRCIO RDMA Read over NVRAM

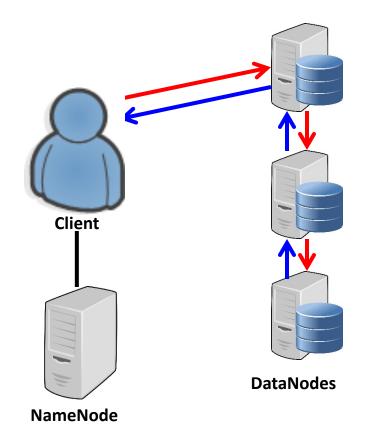

DRAM-TO-NVRAM RDMA-Aware Communication with NRCIO

- Comparison of communication latency using NRCIO RDMA read and write communication protocols over InfiniBand EDR HCA with DRAM as source and NVRAM as destination
- {NxDRAM} NVRAM emulation mode = Nx NVRAM write slowdown vs. DRAM with clflushopt (emulated) + sfence
- Smaller impact of time-for-persistence on the end-to-end latencies for small messages vs. large messages => larger number of cache lines to flush

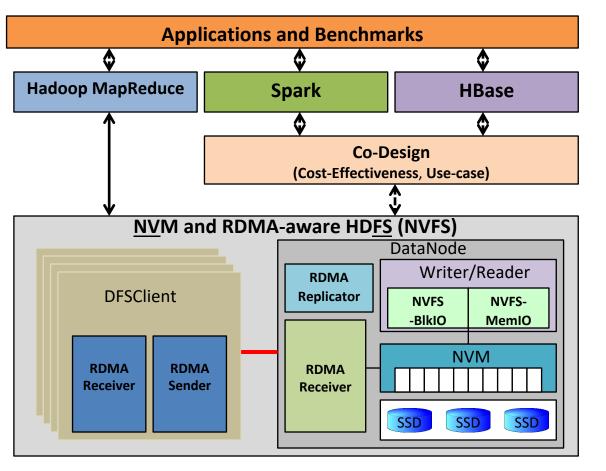
Network Based Computing Laboratory

NVRAM-TO-NVRAM RDMA-Aware Communication with NRCIO

- Comparison of communication latency using NRCIO RDMA read and write communication protocols over InfiniBand EDR HCA vs. DRAM
- {Ax, By} NVRAM emulation mode = Ax NVRAM read slowdown and Bx NVRAM write slowdown vs. NVRAM
- High end-to-end latencies due to slower writes to non-volatile persistent memory
 - E.g., 3.9x for {1x,2x} and 8x for {2x,5x}

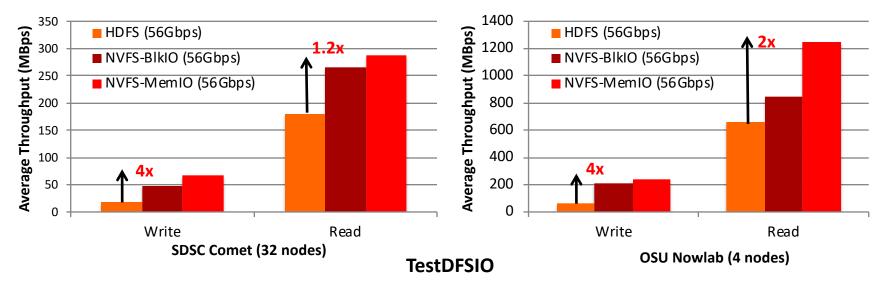

Network Based Computing Laboratory

Presentation Outline


- NRCIO: NVM-aware RDMA-based Communication and I/O Schemes
- NRCIO for Big Data Analytics
- NVMe-SSD based Big Data Analytics
- Conclusion and Q&A

Opportunities of Using NVRAM+RDMA in HDFS

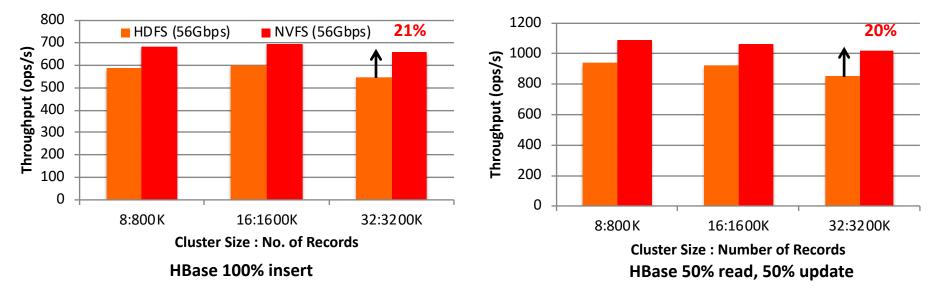
- Files are divided into fixed sized blocks
 - Blocks divided into packets
- NameNode: stores the file system namespace
- DataNode: stores data blocks in local storage devices
- Uses block replication for fault tolerance
 - Replication enhances data-locality and read throughput
- Communication and I/O intensive
- Java Sockets based communication
- Data needs to be persistent, typically on SSD/HDD


Design Overview of <u>NVM</u> and RDMA-aware HDFS (NVFS)

- Design Features
 - RDMA over NVM
 - HDFS I/O with NVM
 - Block Access
 - Memory Access
 - Hybrid design
 - NVM with SSD as a hybrid storage for HDFS I/O
 - Co-Design with Spark and HBase
 - Cost-effectiveness
 - Use-case

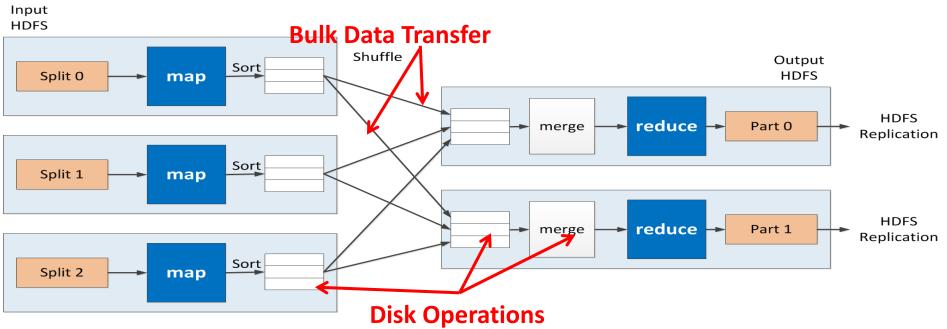
N. S. Islam, M. W. Rahman , X. Lu, and D. K. Panda, High Performance Design for HDFS with Byte-Addressability of NVM and RDMA, 24th International Conference on Supercomputing (ICS), June 2016

Evaluation with Hadoop MapReduce


- TestDFSIO on SDSC Comet (32 nodes)
 - Write: NVFS-MemIO gains by 4x over HDFS
 - Read: NVFS-MemIO gains by 1.2x over

- TestDFSIO on OSU Nowlab (4 nodes)
 - Write: NVFS-MemIO gains by 4x over HDFS
 - Read: NVFS-MemIO gains by 2x over HDFS

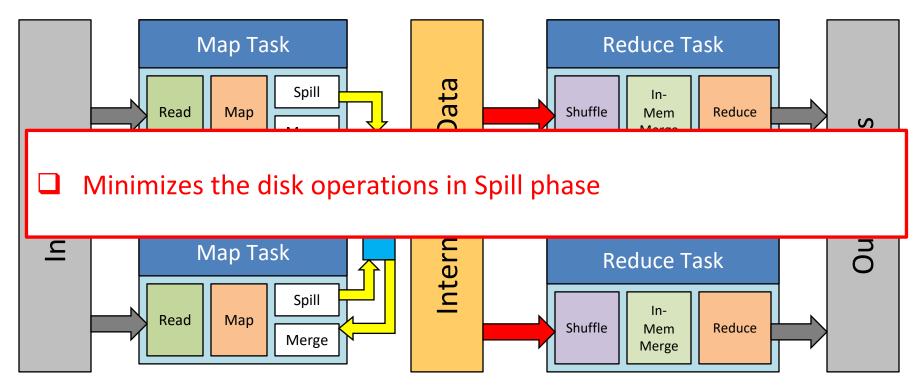
Network Based Computing Laboratory


HDFS

Evaluation with HBase

- YCSB 100% Insert on SDSC Comet (32 nodes)
 - NVFS-BlkIO gains by 21% by storing only WALs to NVM
- YCSB 50% Read, 50% Update on SDSC Comet (32 nodes)
 - NVFS-BlkIO gains by 20% by storing only WALs to NVM

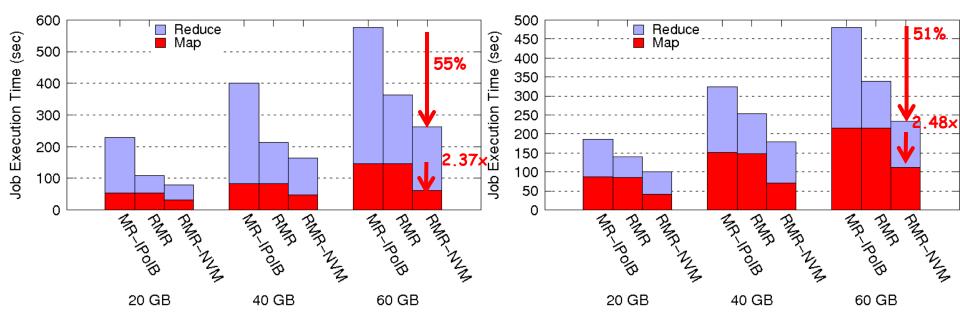
Opportunities to Use NVRAM+RDMA in MapReduce


- Map and Reduce Tasks carry out the total job execution
 - Map tasks read from HDFS, operate on it, and write the intermediate data to local disk (persistent)
 - Reduce tasks get these data by shuffle from NodeManagers, operate on it and write to HDFS (persistent)
- Communication and I/O intensive; Shuffle phase uses HTTP over Java Sockets; I/O operations take place in SSD/HDD typically

Network Based Computing Laboratory

Opportunities to Use NVRAM in MapReduce-RDMA Design

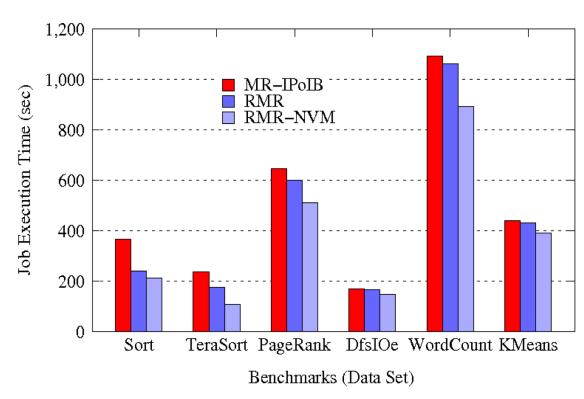
NVRAM-Assisted Map Spilling in MapReduce-RDMA



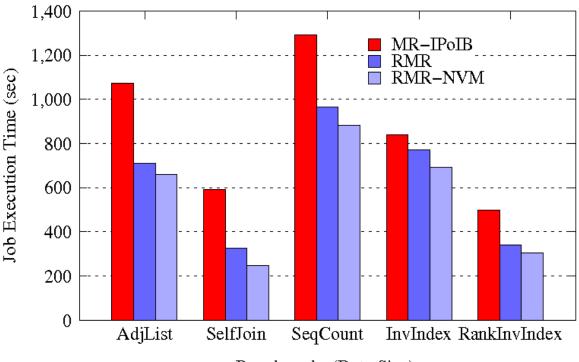
M. W. Rahman, N. S. Islam, X. Lu, and D. K. Panda, Can Non-Volatile Memory Benefit MapReduce Applications on HPC Clusters? PDSW-DISCS, with SC 2016.

M. W. Rahman, N. S. Islam, X. Lu, and D. K. Panda, NVMD: Non-Volatile Memory Assisted Design for Accelerating MapReduce and DAG Execution Frameworks on HPC Systems? IEEE BigData 2017.

Network Based Computing Laboratory


Comparison with Sort and TeraSort

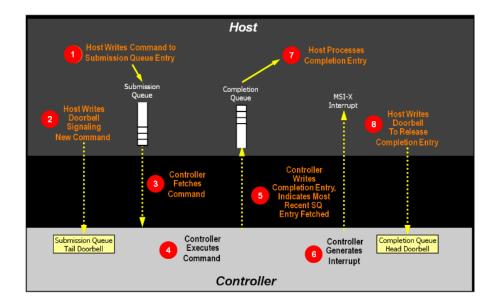
- RMR-NVM achieves 2.37x benefit for Map phase compared to RMR and MR-IPoIB; overall benefit 55% compared to MR-IPoIB, 28% compared to RMR
- RMR-NVM achieves 2.48x benefit for Map phase compared to RMR and MR-IPoIB; overall benefit 51% compared to MR-IPoIB, 31% compared to RMR


Evaluation of Intel HiBench Workloads

- We evaluate different HiBench workloads with Huge data sets on 8 nodes
- Performance benefits for Shuffle-intensive workloads compared to MR-IPoIB:
 - Sort: 42% (25 GB)
 - TeraSort: 39% (32 GB)
 - PageRank: 21% (5 million pages)
- Other workloads:
 - WordCount: 18% (25 GB)
 - KMeans: 11% (100 million samples)

Evaluation of PUMA Workloads

- We evaluate different PUMA workloads on 8 nodes with 30GB data size
- Performance benefits for Shuffle-intensive workloads compared to MR-IPoIB :
 - AdjList: 39%
 - SelfJoin: 58%
 - RankedInvIndex: 39%
- Other workloads:
 - SeqCount: 32%
 - InvIndex: 18%

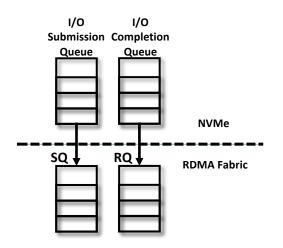

Benchmarks (Data Size)

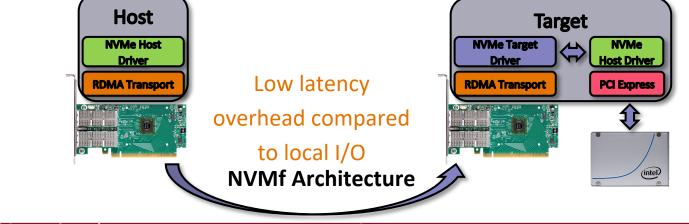
Presentation Outline

- NRCIO: NVM-aware RDMA-based Communication and I/O Schemes
- NRCIO for Big Data Analytics
- NVMe-SSD based Big Data Analytics
- Conclusion and Q&A

Overview of NVMe Standard

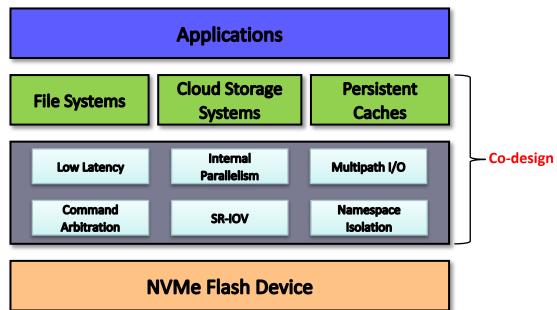
- NVMe is the standardized interface for PCIe SSDs
- Built on 'RDMA' principles
 - Submission and completion I/O queues
 - Similar semantics as RDMA send/recv queues
 - Asynchronous command processing
- Up to 64K I/O queues, with up to 64K commands per queue
- Efficient small random I/O operation
- MSI/MSI-X and interrupt aggregation




NVMe Command Processing

Source: NVMExpress.org

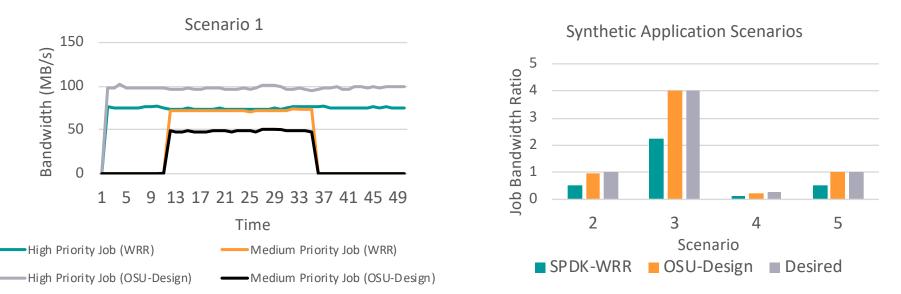
Overview of NVMe-over-Fabric


- Remote access to flash with NVMe over the network
- RDMA fabric is of most importance
 - Low latency makes remote access feasible
 - 1 to 1 mapping of NVMe I/O queues to RDMA send/recv queues

Design Challenges with NVMe-SSD

- QoS
 - Hardware-assisted QoS
- Persistence
 - Flushing buffered data
- Performance
 - Consider flash related design aspects
 - Read/Write performance skew
 - Garbage collection
- Virtualization
 - SR-IOV hardware support
 - Namespace isolation
- New software systems
 - Disaggregated Storage with NVMf
 - Persistent Caches

Evaluation with RocksDB


- 20%, 33%, 61% improvement for Insert, Write Sync, and Read Write
- Overwrite: Compaction and flushing in background
 - Low potential for improvement
- Read: Performance much worse; Additional tuning/optimization required

Evaluation with RocksDB

- 25%, 50%, 160% improvement for Insert, Write Sync, and Read Write
- Overwrite: Compaction and flushing in background
 - Low potential for improvement
- Read: Performance much worse; Additional tuning/optimization required

QoS-aware SPDK Design

- Synthetic application scenarios with different QoS requirements
 - Comparison using SPDK with Weighted Round Robbin NVMe arbitration
- Near desired job bandwidth ratios
- Stable and consistent bandwidth

S. Gugnani, X. Lu, and D. K. Panda, Analyzing, Modeling, and Provisioning QoS for NVMe SSDs, (Under Review)

Conclusion and Future Work

- Big Data Analytics needs high-performance NVM-aware RDMA-based Communication and I/O Schemes
- Proposed a new library, NRCIO (work-in-progress)
- Re-design HDFS storage architecture with NVRAM
- Re-design RDMA-MapReduce with NVRAM
- Design Big Data analytics stacks with NVMe and NVMf protocols
- Results are promising
- Further optimizations in NRCIO
- Co-design with more Big Data analytics frameworks
 - TensorFlow, Object Storage, Database, etc.

Thank You!

luxi@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~luxi

Network-Based Computing Laboratory <u>http://nowlab.cse.ohio-state.edu/</u> The High-Performance Big Data Project <u>http://hibd.cse.ohio-state.edu/</u>