
Bare Metal Library
Abstractions for modern hardware
Cyprien Noel

1. Devices, lots of them
2. It’s a problem
3. But solutions

○ Device-centric abstractions
○ Device-to-device flows

Plan

● High performance trading systems
○ Lock-free algos, distributed systems

● H2O
○ Distributed CPU machine learning, async SGD

● Flickr
○ Parallel deep learning ⎼ Multi-GPU Caffe
○ Distributed deep learning ⎼ CaffeOnSpark, RDMA, multicast, Hogwild

● UC Berkeley
○ NCCL Caffe, GPU cluster tooling
○ Bare Metal

Myself

Trend

Number crunching ➔ GPU

FS, block io ➔ Pmem

Network stack ➔ RDMA

RAID, replication ➔ Erasure
codes

Device mem ➔ Coherent fabrics

And more:
Video, crypto etc.

ms software ➔ µs hardware

Good ol’ OS abstractions replaced by

Faster, more powerful, but
● More complex
● Non-interoperable

○ Namespaces
○ Security models
○ Failure models

● CUDA
● OFED
● Libpmem
● DPDK
● SPDK
● Libfabric
● UCX
● VMA
● More every week...

Device-to-device flows

Summary So Far - Big changes coming!

● CPU should orchestrate
○ Not in critical path
○ Device-to-device flows - data and control

➔

What do we want?
● Stop over-specifying!

○ Location transparency: device-to-device, HA
○ Single namespace, security and failure models

● Simple model, slight extension of something familiar
● Forward and backward version compatible
● Thin efficient abstraction over hardware
● Stretch goals

○ Versioned git style
○ Capability system
○ Stateless apps, all state in versioned namespace

Proposal
● Single namespace

○ File system like, distributed
○ HA using hardware erasure codes

● Nodes are data, compute steps or devices
○ E.g. numpy, protobuf, CUDA kernel, compute graph
○ Node execution starts when inputs are ready

● Versioned
○ Branch abstraction
○ Atomic merge or abort

● Extension to classic mmap
○ Distributed
○ Typed - numpy, protobuf, other formats planned

● Python example

test = Test()
bm.mmap('/test', test)
i = test.field()

API: mmap

API: task

@bm.task
def compute(x, y):
 return x * y

Runs locally
compute(1, 2)

Might be rebalanced on cluster
data = bm.list()
bm.mmap("/data", data)
compute(data, 2)

API: branch

bm.branch = 'my_branch'
... modify dataset
bm.commit()

account1 = bm.mmap('/account1', my_model.account())
account2 = bm.mmap('/account2', my_model.account())
with bm.branch() as b:
 account1.set_balance(account1.balance() + 12)
 account2.set_balance(account2.balance() - 12)

Internals
● Hardware erasure codes for all state
● Device-to-device transfers - e.g. GPU Direct
● Device-to-device control - e.g. GPU Direct Async
● Work stealing - RDMA atomics
● Branches and lattice simplify a lot

○ No locks or coordination for most tasks
○ Atomicity - simplifies consistency

■ Replaces transactions, e.g. KV, queues, persistent memory
■ No file system fsync, msync (Very hard! Rajimwale et al. DSN ‘11)

○ Allows duplicate work merge
○ Generalized staging / production split

● A data PR would contain
○ Data inputs
○ Code, compute graphs
○ Execution logs

● Single history tree
○ Code
○ Compilations
○ Executions
○ Data

● Persistent Jupyter Notebook?

Data pull requests

Thank You!
Will be open sourced BSD

Contact me if interested - cyprien.noel@berkeley.edu

Thanks to our sponsor

