
2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 1

Improving Azure File Service:
Adding New Wings to a Plane in Mid-flight

David Goebel
Microsoft

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 2

Azure File Service
Talk Topics:
0. Review of Azure Files design
1. Schema impacting new features
2. How new features are enabled in a service

with zero downtime
3. As time allows, more Azure Files topics.

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 3

SMB Protocol History
• <= Srv03 was V1.3 and carried lots of baggage.
• Vista: SMB 2.02 was a vast simplification to reduce chattiness and

map SMB commands to NT Irps and compound commands. Durable
handles allowed handles to be reconnect after a network hiccup.

• Win7: SMB 2.1 introduced resilient handles and “leases” which
supersede the older oplock scheme taken from 1.3

• Win8: SMB 3.0 added encryption, leases on directory handles,
multichannel & RDMA (SMB Direct), and persistent handles to
support CA (Continuously Available) shares on clustered servers.

• Win8.1: SMB 3.0.2 added cluster enhancements.
• Win10: SMB 3.1.1 adds negotiated encryption algorithm, secure

negotiate and other security features.

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 4

AFS¹ Fundamental Concepts
• AFS is not the Windows SMB server (srv2.sys) running

on Azure nodes.
• AFS is a completely new SMB server implementation

which uses Azure Tables and Blobs as the backing store.
• AFS leverages the highly available and distributed

architecture of Tables and Blobs to imbue those same
qualities to the file share.

¹ Azure File Service, not CMU’s Andrew File System nor Azure File Sync.

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 5

Current AFS Status/Limits
• SMB 3.0 w/encryption, persistent handles, and dir leases.
• 5TiB per share (100 TiB in private preview), and 1TiB per file.
• 1000 IOPS limit per share (up to 100,000 in private preview).
• ~60 MB/share/sec typical (up to ~5GiB/sec in private preview).
• Per-file ACLs with Kerberos authentication & AD integration in preview.
• Premium Files, i.e. SSD backed limited public preview.
• Share snapshots in production worldwide.
• Removed limitation on Private Use Area characters (0xE000 to 0xF8FF).
• Some NTFS features not supported.

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 6

Current Linux Support
Linux Distribution Publisher

Kernel
Version

CIFS
Version

SMB3 Persistent
Handles

SMB3
Encryption

Ubuntu Server 18.04 LTS Canonical
4.15.0-34-
generic

2.10 Yes Yes

CentOS 7.5
Rogue Wave
Software

3.10.0-
862.2.3.el7

2.03 Yes Yes

Debian 9 Credativ
4.9.0-3-
generic

2.09 Yes No

Open SUSE Leap 42.3 SUSE 4.4.156-5.1 2.08 Yes Yes

SUSE Linux Enterprise
Server 15

SUSE
4.12.14-
25.16.1

2.09 Yes Yes

Ubuntu Server 18.04 LTS Canonical
4.15.0-34-
generic

2.10 Yes Yes

Note: Directory lease support has been in the mainline kernel for a couple releases, but hasn’t been backported.

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 7

SMB3
Encryption
Enabled
Scenario

Note: Port 445 outbound must be unblocked.

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 8

DEMO

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 9

Scenarios Enabled By AFS
• Existing file I/O API (Win32, CRT, etc.) based applications, i.e.

most business applications written over the last 30 years,
should “just work”®. More on this in “Lessons Learned” later.

• A business can stage existing workloads seamlessly into the
cloud without modification to mission critical applications.

• Some minor caveats that will become more minor over time.

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 10

What about REST?
If you’re a true believer in the benefits of statelessness, SMB
and REST access the same data in the same namespace so a
gradual application transition without disruption is possible.
 Container operations:

Create, List, Delete, Get properties, Get/Set metadata
 Directory Operations:

Create, Delete, Get Properties, List (Same as ListFiles)
 File operations:

Create, List, Delete, Get/Set properties, Get/Set metadata, Get Contents,
Put Ranges, List Ranges

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 11

\\AccountName.file.core.windows.net\ShareName DNS Load Balancer

for example 157.56.217.32:445

Front
End

Node 2

Front
End

Node 0

Front
End

Node 1

Front
End

Node N
. . . .

Azure Table and Blob Store
Details in next slide

“FrontEnd”: Ephemeral state and immutable state.
“BackEnd”: Solid and Fluid durable state.

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 12

Azure Table and Blob Store

• AFS uses the underlying Azure Tables infrastructure to store
metadata associated with files/dirs, open handles to them and
other state like byte range locks, leases, etc.

• An Azure Table is a simple NoSQL collection of rows with a
common column schema and sorted / searchable by a subset
of ordered ‘key’ columns.

• There are two types of keys: partition and row.
• Table operations are transactional within a “partition”.

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 13

Leveraging Azure Table Infrastructure
• Internal transaction APIs allow multiple rows from multiple

tables to be modified with ACID semantics in a single
transaction, as long as they have the same partition key.

• Currently, a share is wholly contained within a partition.
• In private preview, a file share may now span many partitions.
• This new feature is not limited to just new accounts.
• The schema impacting change is made on the fly as needed.

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 14

AFS Tables
• Azure Tables allows associating a set of tables as a group.
• Within a partition, a single request can atomically operate on multiple tables in this group.
• An AFS share’s metadata is stored as a group of tables, the most notable of which are:

File A table of all files and directories. It is a hybrid type, keyed
by either ParentId & FileName, or FileId (64bit like NTFS).

Page The allocated file ranges and their backing page blobs.
Handle All open handles to files and directories.
Lease All currently active SMB leases.
Change Notify Registered change notifies.
Byte Range Locks All currently active byte range locks

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 15

AFS File Table Row Keys

Account Name Share Name ParentId FileName ShareVersion Other Columns

• There are two types of file rows: Namespace and Data
(technically a single merged row type, but showing them separate here for clarity)

• There are two types or keys: Partition and Row
Namespace Rows

Partition Key Row Key

Account Name Share Name FileId ShareVersion Other Columns
Data Rows: Current Production

Partition Key Row Key

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 16

AFS File Table Row Keys

Account Name Share Name ParentId FileName ShareVersion Other Columns

• There are two types of file rows: Namespace and Data
(technically a single merged row type, but showing them separate here for clarity)

• There are two types or keys: Partition and Row
Namespace Rows

Partition Key Row Key

Account Name Share Name FileId ShareVersion Other Columns
Data Rows: Large File Share Version

Partition Key Row Key

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 17

File Row Migration
• Changing the partition key is a big deal.
• Additional state now needs to be replicated between the

namespace and data partitions, namely handles and leases.
• A background process performs this for all open files.
• A partition can be in a “mixed” state for an extended period.
• If a handle is used before its file row has been migrated an

on-demand migration is performed.
• This creates a seamless experience for customers, unaware

that a major schema change happened underneath them.

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 18

Mapping AFS to hardware
Front
End

Node 2

Front
End

Node 0

Front
End

Node 1

Front
End

Node N
. . . .

EN
Node 1

Back End
Table Node

EN
Node 0

EN
Node N

. . . .

FrontEnd nodes receive connections from clients. Any FE node can service any share.

Currently a single share/container is within a single partition which is at any time “owned”
by a single BE Table Node. A TableMaster service manages moving partition ownership in
the case of BE node failure or for load balancing. Page blobs are managed by EN nodes.

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 19

Mapping AFS to hardware
Front
End

Node 2

Front
End

Node 0

Front
End

Node 1

Front
End

Node N
. . . .

EN
Node 0

Back End
Table Node 0

EN
Node N

. . .

FrontEnd nodes receive connections from clients. Any FE node can service any share.

Now a single share/container is partitioned (by FileId) with those partitioned “owned”
by a collection of BE Table Nodes. The TableMaster splits and merges partitions to
maintain uniform load. Page blobs are managed by EN nodes (hasn’t changed).

Back End
Table Node 0

. . .

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 20

FE 0 FE 1 FE 2 FE 3 FE NFE 4

EN 0 EN 1 EN 2 EN 3 EN NEN 4

FE = Front End Node
(client connection)

BE = Back End Node
(manages metadata)

EN = Extent Node
(stores actual file data)

Original State / Data Flow Topology on a Single Share

BE XMetadata* & File Write Data

*Write Data Only to EN

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 21

FE 0 FE 1 FE 2 FE 3 FE NFE 4

EN 0 EN 1 EN 2 EN 3 EN NEN 4

FE = Front End Node
(client connection)

BE = Back End Node
(manages metadata)

EN = Extent Node
(stores actual file data)

Original State / Data Flow Topology on a Single Share

BE XMetadata* & File Write Data

File Read Data

*Write Data Only to EN

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 22

FE 0 FE 1 FE 2 FE 3 FE NFE 4

EN 0 EN 1 EN 2 EN 3 EN NEN 4

FE = Front End Node
(client connection)

BE-N = Back End Namespace Node
(namespace metadata)

BE-B = Back End Blob Node
(file metadata)

EN = Extent Node
(stores actual file data)

New State / Data Flow Topology on a Single Share

BE-N

Namespace Metadata

BE-B0 BE-B1 BE-BN. . . .

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 23

FE 0 FE 1 FE 2 FE 3 FE NFE 4

EN 0 EN 1 EN 2 EN 3 EN NEN 4

FE = Front End Node
(client connection)

BE-N = Back End Namespace Node
(namespace metadata)

BE-B = Back End Blob Node
(file metadata)

EN = Extent Node
(stores actual file data)

New State / Data Flow Topology on a Single Share

BE-N

Namespace Metadata

BE-B0 BE-B1 BE-BN. . . .

File Metadata* & Write Data

*Write Data Only to EN

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 24

FE 0 FE 1 FE 2 FE 3 FE NFE 4

EN 0 EN 1 EN 2 EN 3 EN NEN 4

FE = Front End Node
(client connection)

BE-N = Back End Namespace Node
(namespace metadata)

BE-B = Back End Blob Node
(file metadata)

EN = Extent Node
(stores actual file data)

New State / Data Flow Topology on a Single Share

BE-N

Namespace Metadata

BE-B0 BE-B1 BE-BN. . . .

File Metadata* & Write Data

*Write Data Only to EN

File Read Data

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 25

Multi-table requests
• Namespace oriented requests make the heaviest use of

transactions across multiple tables.
• Open/Create/Close will make modifications to at least

two tables. Close can be particularly involved.
• Even reads/writes have to look at byte range locks and

potentially break leases.
• The built-in transaction support makes this relatively

painless….before large file shares.

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 26

Achieving active/active high availability
• For a given share, state is tiered between FE nodes and the

BE node depending on its durability requirements.
• All state required to correctly handle requests from different

clients for the same file is managed by the BE.
• This segregation of state together with table transaction

support in Azure enable active/active support.
• Large File Share support has added distributed transactions.

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 27

Tiering State By Durability Requirement
• A conventional file server treats only actual file data and

essential metadata (filesize, timestamps, etc) as needing
to be durably committed before an operation is
acknowledged to the client (and even then only if opened
WriteThrough).

• For true active/active high availability and coherency
between FrontEnd nodes, modified state that normally
exists only in server memory must be durably committed.

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 28

SMB is a stateful protocol,
but not all states require expensive distributed transactional semantics

• Some aspects of a file’s state are immutable, such as FileId
and whether it’s a file or a directory.

• Some state is transient, such as open counts, and can be
optimized if loss of this state is acceptable in a disaster.

• Some state is also maintained by the client, like
CreateGuid, drastically reducing the cost of tracking clients.

• State associated with connection mechanics is ephemeral.

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 29

Front
End

Node 2

Front
End

Node 0

Front
End

Node 1

Front
End

Node N
. . . .

Azure Table and Blob Store

Client A accessing
\\MySrv\MyShare

Client B accessing
\\MySrv\MyShare

• Clients A & B both accessing the
same share/files via the same
DNS name.

• Same coherency as if they were
talking to a single on-premises
server.

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 30

Front
End

Node 2

Front
End

Node 0

Front
End

Node 1

Front
End

Node N
. . . .

Azure Table and Blob Store

Client A accessing
\\MySrv\MyShare

Client B accessing
\\MySrv\MyShare

• Clients B loses connection to FE1
or FE1 goes down (either due to a
failure of some sort or intentional
software upgrade).

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 31

Front
End

Node 2

Front
End

Node 0

Front
End

Node 1

Front
End

Node N
. . . .

Azure Table and Blob Store

Client A accessing
\\MySrv\MyShare

Client B accessing
\\MySrv\MyShare

• Client B automatically reconnects
to \\MySrv\MyShare and the Load
Balancer selects a new FE.

• This is completely* transparent to
any application running on ClientB.

*completely with SMB3, mostly with SMB2.1

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 32

• Ephemeral state: SMB2_FILEID.Volatile, credits, tcp
socket details.

• Immutable state: 64bit actual FileId, IsDirectory
• Solid durable state: SMB2_FILEID.Persistent, SessionId
• Fluid durable state: Open counts, file names, file size,

lease levels and many more. This is the largest group of
states.

Examples of state tiering

“Solid” here meaning the state is generated by AFS and not generally changeable by normal
actions of the client/application while “Fluid” is fully changeable by File APIs.

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 33

Example: Durable Handle Reconnect
• Intended for network hiccups as it assumes all state is

still valid on the server.
• On AFS this state is durably persisted on our

BackEnd so we’re able to ‘stretch’ durable handles to
recover from FrontEnd AFS failures (planned or
otherwise) since it’s transparent to the client.

• This is important as we’re continually updating AFS
code requiring AFS service restarts.

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 34

Example: Persistent Handles
• Unlike Durable Handles, Persistent Handles are actually

intended to support Transparent Failover when the server dies.
• Leverages state on the client for replay detection so that ‘once

only’ operations are only executed once.
• More create request details durably committed with the handle.
• With Durable Handles SMB 2.1 protocol compliance required

us to artificially limit our capability. With Persistent Handles we
have seamless Transparent Failover.

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 35

Observations and Lessons Learned
• We now have some experience running the world’s largest SMB

server.
• Metadata operations are unfortunately common and expensive for us.
• Even compared to srv2.sys on-prem, AFS pays a high price for its

durability. Open/Close and Write-Only handles are particularly bad.
• Some applications may not be suitable for “lift and shift”, especially if

they have never even been run against an on-prem file server.
• In terms of total aggregate End-to-End request time, all that matters

are Create, Close, Read and Write.

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 36

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 37

Specific Pain Points
• Leaked handles and the implication on (yet to be) deleted files.
• Leaked handles redux: absolute limits.
• Lack of server management people are used to on-prem.
• fopen(“foo”, “a”).
• Variability in performance.
• Shared namespace with REST limited by HTTP restrictions.
• In general, poorly written Apps.

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 38

Resources:
• Getting started blog with many useful links:

http://blogs.msdn.com/b/windowsazurestorage/archive/2014/05/12/introducing-
microsoft-azure-file-service.aspx

• Generally Availability announcement:
https://azure.microsoft.com/en-us/blog/azure-file-storage-now-generally-available

• NTFS features currently not supported:
https://msdn.microsoft.com/en-us/library/azure/dn744326.aspx

• Naming restrictions for REST compatibility:
https://msdn.microsoft.com/library/azure/dn167011.aspx

http://blogs.msdn.com/b/windowsazurestorage/archive/2014/05/12/introducing-microsoft-azure-file-service.aspx
https://azure.microsoft.com/en-us/blog/azure-file-storage-now-generally-available
https://msdn.microsoft.com/en-us/library/azure/dn744326.aspx
https://msdn.microsoft.com/library/azure/dn167011.aspx

2018 Storage Developer Conference. © Microsoft Corporation. All Rights Reserved. 39

Thank You!
Questions?

	Improving Azure File Service:�Adding New Wings to a Plane in Mid-flight
	Azure File Service
	SMB Protocol History
	AFS¹ Fundamental Concepts
	Current AFS Status/Limits
	Current Linux Support
	Slide Number 7
	DEMO
	Scenarios Enabled By AFS
	What about REST?
	Slide Number 11
	Slide Number 12
	Leveraging Azure Table Infrastructure
	AFS Tables
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Mapping AFS to hardware
	Mapping AFS to hardware
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Multi-table requests
	Achieving active/active high availability
	Tiering State By Durability Requirement
	SMB is a stateful protocol,�but not all states require expensive distributed transactional semantics
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Examples of state tiering
	Example: Durable Handle Reconnect
	Example: Persistent Handles
	Observations and Lessons Learned
	Slide Number 36
	Specific Pain Points
	Resources:
	Thank You!

