

For your consideration...

SMB in a Chewable Size Defining a Low Level API

Christopher R. Hertel Wekalo & Samba Team September 2018 SNIA SDC

Quick Introductions

Copyright S 2018 by Christopher R. Sertel

Introductorationaryesquenessesism

Me: • Samba Team Elder • SMB Wizard with...

The opinions expressed are my own and not necessarily those of my employer, my colleagues, my spouse, my spirit familiar, the Internet Voices, or the monster in the closet.

Taxonomy

Three general categories for network data storage.

- Obviously \${userPref} is the best
- Two predominant Network File Protocols:
 - NFS (<u>N</u>etwork <u>F</u>ile <u>System</u>)
 - SMB (<u>Server Message Block</u>)

SMB is a File Protocol

SMB presents:
Shares
○ Directories
■ Files

A network extension for DOS, OS/2, and Windows File Systems for over 3 decades.

- → Also carries system calls,
- → Named Pipe Operations (IPC), and
- → Remote Procedure Calls (RPC).

SMB is a Network Transport

SMB is Infrastructure

- A Reliable, Scalable, Authenticated, Signed, Sealed, Network Connection
 We've already mentioned RPC
 - There's also RSVD
 - Block I/O for Storage Spaces Direct

Think of SMB as a Transport.

What are SMB1, SMB2, and SMB3?

SMB1: The Original

- Created in the early 1980's by IBM
- Further development by 3Com, IBM, Intel, and Microsoft
 - ➤ For PC-DOS, MS-DOS, and OS/2
 - Dialect updates released with Operating System Updates
- Ported to Windows NT
 - ➤ Final Dialect! "NT LM 0.12"

What are SMB1, SMB2, and SMB3?

SMB2: Introduced with Vista!

- An Entirely New Protocol
 - > 1/4th as many message types
 - > No DOS or OS/2 Baggage
- Similar Design
 - Familiar to SMB1 Developers
- Silently Negotiated
 - > Users neither knew nor cared

What are SMB1, SMB2, and SMB3?

SMB3: Marketing Upgrade!

- An SMB2 Dialect; not a new Protocol
 - > Originally planned as 2.2
 - Message structures are the same
- ✤ Adds Speed, Scalability, Reliability
 - ≻ RDMA
 - > Multichannel
 - Persistent Handles

What are SMB1, SMB2, and SMB3?

SMB1 is dead.

Copyright S 2018 by Christopher R. Hertel

What are SMB1, SMB2, and SMB3?

CIFS is deader.

eleven

Copyright S 2018 by Christopher R. Hertel

SMB Stability

How standard is SMB? - It's <u>Not!</u>

- SMB1 was Undocumented for Years.

However...

- Backward Compatibility is a Business Requirement
- It's Now Documented
- It's Entwined with the Infrastructure

Copyright S 2018 by Christopher R. Hertel

Consider the SMB "Protocol Stack"

- SMB2/3 message handling can be broken down into layers
- Layers can be interconnected by Programming Interfaces
 You know, like the OSI stack

By leveraging the SMB2/3 message handling hierarchy, we can...

- Isolate message parsing/packing
- Handle message syntax errors
- Identify and manage base-level state

What I am proposing here is a:

Standard,

- Low level,
- □ SMB2/3 Messaging API

- Why?
 - \star Implement it as a library
 - \star ...or perhaps as a device
 - ★ …or both
 - \star Implement it in offload cards:
 - Handle the Underlying Transport (TCP, RDMA)
 - Multichannel
 - Signing and Sealing

If done right...

 Separates the Semantic from the Syntactic layers

- Mix and match
 stack components
- Gain performance by upgrading the lower level with no change to the higher level code

SMB2 Message Handling Hierarchy

- 2. Syntax (SECTION 2) Packet Parsing and Packing
- **3. Semantics** (SECTION 3) **What does it all mean?**
- 3. State (SECTION 3) Maintain and Transition per Input

NOTHING IS CARVED IN STONE

... BUT HERE'S WHAT I HAVE IN MIND.

Copyright S 2018 by Christopher R. Sertel

SMBopen()

 Open a handle to an SMB2/3 message "device".

SMBcreate()

- Create a handle by binding a socket to an SMB2/3 message library.
- Allow stacking, to support new dialects.

SMBclose()

 Close an smb2/3 message handle, freeing resources.

The design can be informed by the socket model.

We'll need equivalents to connect (2) and accept (2), etc.

SMBsend()

- Given a data structure, compose and send a correct SMB2/3 message.
- Validate the message before sending.

SMBrecv()

- Upon receiving a message, parse it.
- Handle obvious protocol errors.
- Provide the parsed message to the caller.

We may also need select (2) /poll(2) equivalents to know when messages are ready.

SMBsetopt()

- Set engine-internal parameters
 - ...such as which dialects we support
 - ...or which capability bits
 - ...or enable/disable crypto options

SMBgetopt()

- Retrieve engine-internal parameters
 - Ask which dialects the engine supports
 - Retrieve engine statistics

Obviously parallel to get/setsockopt (2).

The Plan

- This should be a win for:
 - SMB Implementers
 Open Source and Commercial
 Hardware Vendors
 Cards
 Platforms
 Device Driver Developers

The Plan

To Create a Standard, we need:

- A rough-draft spec from which to start
- A Committee
- A reference implementation
- An organization to provide structure and support

The End

Copyright ⁽¹⁾ 2018 by Christopher R. Hertel