liblightnvm

The Open-Channel SSD User-Space Library

Simon A. F. Lund
CNEX Labs
Open-Channel SSD
Open-Channel SSD

- Media
- Controller

nvm EXPRESS
Open-Channel SSD

- Media
- Controller
Open-Channel SSD: Drive Model

- Logical Block
- Chunk
- Parallel Unit
- Group of Parallel Units
Open-Channel SSD: Addressing

Fixed ordering
Variable bit-lengths

Example format descriptor

Example bit string

Unused bits
Open-Channel SSD: Chunk

- Contains Minimal Addressable Units
 - Each unit has size in bytes e.g. 4096
 - **Nomenclature**: logical block, sector, address
- Addresses within a chunk are contiguous
 - E.g. Address range \([0, \text{naddrs}-1]\)
Open-Channel SSD: Chunk IO Constraints

1. Erase before write
2. Write contiguously
3. Write `WS_MIN` multiple # of addresses pr. cmd
4. Read no further than address `WP – MWC`
Open-Channel SSD: Chunk IO Constraints

1. Erase before write
2. Write contiguously
3. Write WS_MIN multiple # of addresses pr. cmd
4. Read no further than address WP – MWC
liblightnvm: Related

- nvme-cli
 - https://github.com/linux-nvme/nvme-cli
- SPDK
 - https://github.com/spdk/spdk
- libnvme
 - https://github.com/hgst/libnvme
liblightnvm: overview
liblightnvm: Usages

- Pure User-Space driven IO
 - Dedicated application-integration
liblightnvm: Usages

- Pure User-Space driven IO
 - Dedicated application-integration
- Hybrid Kernel and User-Space
 - PBLK + User-Space for application IO
liblightnvm: Usages

- Pure User-Space driven IO
 - Dedicated application-integration
- Hybrid Kernel and User-Space
 - PBLK + User-Space for application IO
- Tooling for Open-Channel SSD kernel services
 - File-system and FTL management and maintenance
liblightnvm: OCSSD Device Attributes

- nvm_cmd_idfy
- struct nvm_dev
 - nvm_dev_openf(ident, flags)
 - nvm_dev_get_wsopt(dev)
 - nvm_dev_get_geo(dev)
- struct nvm_geo

```
dev_geo:
  verid: 0x02
  npugrp: 8
  npunit: 4
  nchunk: 1474
  nsectr: 6144
  nbytes: 4096
  nbytes_oob: 16
  tbytes: 1187021586432
  tmbytes: 1132032
```
liblightnvm: OCSSD Device Attributes

DEMO: nvm_cmd_idfy
https://asciinema.org/a/WJJMxRKsgAq0GlbWlfhIA
GZDI

DEMO: nvm_dev and nvm_geo
https://asciinema.org/a/DCr9ak5VdnC1pJjvKQQ
Nlg
liblightnvm: OCSSD Media State

- nvm_cmd_rprt
 - Retrieve chunk descriptors for all chunks
 - Retrieve chunk descriptors for all chunks in a parallel unit
liblightnvm: OCSSD Media State

- nvm_cmd_rprt
 - Retrieve chunk descriptors for all chunks
 - Retrieve chunk descriptors for all chunks in a parallel unit
- nvm_cmd_rprt_arbs
 - Provides \(N \) arbitrary chunk addresses in the requested state in distinct parallel units
liblightnvm: OCSSD Media State

DEMO

https://asciinema.org/a/XGppr2Yjdc90fsoyLCPVCx0sc
liblightnvm: OCSSD Addressing

- struct nvm_addr
 - Geometric accessors
 - Address translation is handled by the library
 - User does not need to know about the LBAF
liblightnvm: OCSSD Addressing

- struct nvm_addr
 - Geometric accessors
 - Address translation is handled by the library
 - User does not need to know about the LBAF
- nvm_dev_gen2dev
- nvm_dev_dev2gen
liblightnvm: OCSSD Addressing

DEMO

https://asciinema.org/a/tFwlWRMq0DwwvK5oq5bCuBpty
liblightnvm: OCSSD IO Commands

- nvm_cmd_erase – Vector Reset / DSM deallocate
- nvm_cmd_write – Vector / Scalar Write
- nvm_cmd_read – Vector / Scalar Read
- nvm_cmd_copy – Vector Copy
liblightnvm: OCSSD IO Commands

DEMO

https://asciinema.org/a/iq8hoPAYpXSqY5Jgg67SrbbA1Q
liblightnvm: OCSSD IO Command Options

- IO Addressing Mode (SCALAR or VECTOR)
liblightnvm: OCSSD IO Command Options

- IO Addressing Mode (SCALAR or VECTOR)
- NVM_CMD_SCALAR
 - erase / write / read mapped to NVMe spec. defined opcodes
liblightnvm: OCSSD IO Command Options

- IO Addressing Mode (SCALAR or VECTOR)
- NVM_CMD_SCALAR
 - erase / write / read mapped to NVMe spec.
 defined opcodes
- NVM_CMD_VECTOR
 - erase / write / read mapped to OCSSD spec.
 defined VECTORE opcodes
liblightnvm: OCSSD IO Command Options

- IO Execution Mode (SYNC or ASYNC)
liblightnvm: OCSSD IO Command Options

- IO Execution Mode (SYNC or ASYNC)
- NVM_CMD_SYNC
 - Submits and blocks until completion
liblightnvm: OCSSD IO Command Options

- IO Execution Mode (SYNC or ASYNC)
 - NVM_CMD_SYNC
 - Submits and blocks until **completion**
 - NVM_CMD_ASYNC
 - Returns after **submission**
 - Callback function called upon **completion**
liblightnvm: Striping

<table>
<thead>
<tr>
<th>chunk0</th>
<th>chunk1</th>
<th>chunk2</th>
<th>chunk3</th>
<th>chunk0</th>
<th>chunk1</th>
<th>chunk2</th>
<th>chunk3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>25</td>
<td>37</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>26</td>
<td>38</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>27</td>
<td>39</td>
<td>9</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>28</td>
<td>40</td>
<td>13</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>29</td>
<td>41</td>
<td>17</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td>30</td>
<td>42</td>
<td>21</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>19</td>
<td>31</td>
<td>43</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>32</td>
<td>44</td>
<td>25</td>
<td>27</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>9</td>
<td>21</td>
<td>33</td>
<td>45</td>
<td>29</td>
<td>31</td>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td>10</td>
<td>22</td>
<td>34</td>
<td>46</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td>11</td>
<td>23</td>
<td>35</td>
<td>47</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>36</td>
<td>48</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
</tr>
</tbody>
</table>

VERT

<table>
<thead>
<tr>
<th>chunk0</th>
<th>chunk1</th>
<th>chunk2</th>
<th>chunk3</th>
<th>chunk0</th>
<th>chunk1</th>
<th>chunk2</th>
<th>chunk3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
</tr>
<tr>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HORZ
liblightnvm: Striping

<table>
<thead>
<tr>
<th>chunk0</th>
<th>chunk1</th>
<th>chunk2</th>
<th>chunk3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13</td>
<td>25</td>
<td>37</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>26</td>
<td>38</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>27</td>
<td>39</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>28</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>29</td>
<td>41</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td>30</td>
<td>42</td>
</tr>
<tr>
<td>7</td>
<td>19</td>
<td>31</td>
<td>43</td>
</tr>
<tr>
<td>8</td>
<td>20</td>
<td>32</td>
<td>44</td>
</tr>
<tr>
<td>9</td>
<td>21</td>
<td>33</td>
<td>45</td>
</tr>
<tr>
<td>10</td>
<td>22</td>
<td>34</td>
<td>46</td>
</tr>
<tr>
<td>11</td>
<td>23</td>
<td>35</td>
<td>47</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>36</td>
<td>48</td>
</tr>
</tbody>
</table>

VERT

<table>
<thead>
<tr>
<th>chunk0</th>
<th>chunk1</th>
<th>chunk2</th>
<th>chunk3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
</tr>
<tr>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
</tr>
</tbody>
</table>

HORZ

2018 Storage Developer Conference. © CNEX Labs, Inc. All Rights Reserved.
liblightnvm: Striping Caveat

- Constraints amplified
- Write-cache increase
 - MWC × k
- Optimal write-size
 - WS_OPT × k
- Minimal write is intact

<table>
<thead>
<tr>
<th>chunk0</th>
<th>chunk1</th>
<th>chunk2</th>
<th>chunk3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
</tr>
<tr>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
</tr>
<tr>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
</tr>
</tbody>
</table>
liblightnvm: OCSSD ASYNC IO Example

DEMO

https://asciinema.org/a/8bo7Ma0DWqqZaMQRelGWDNTaf
liblightnvm: Abstractions

- Reduce the cognitive load on the OCSSD user
liblightnvm: Abstractions

- Reduce the cognitive load on the OCSSD user
- Provide traditional IO semantics
 - `write(fd, *buf, count)` / `read(fd, *buf, count)`
 - `pread(fd, *buf, count, offset)`
liblightnvm: Abstractions

- Reduce the cognitive load on the OCSSD user
- Provide traditional IO semantics
 - `write(fd, *buf, count) / read(fd, *buf, count)`
 - `pread(fd, *buf, count, offset)`
- Use them when you need them
 - Peel them off and take control when you don’t
liblightnvm: Virtual Block

- Encapsulates IO to a disjoint set of \(k \) chunks
- Dynamic / Runtime control of parallel units
 - User provisioned set of chunks
- HORZ striping on \(WS_{OPT} \) for throughput
liblightnvm: Virtual Block

- Traditional IO Semantics
 - `nvm_vblk_write(*vblk, *buf, count)`
 - `nvm_vblk_read(*vblk, *buf, count)`
 - `nvm_vblk_pread(*vblk, *buf, count, offset)`
- Agnostic to media and spec. variation
liblightnvm: Virtual Block

DEMO

https://asciinema.org/a/HnP5a9smu8W6HoeyaqC6DavBeo
liblightnvm: Append-Only Streams

- Encapsulates IO to a disjoint set of k chunks
- Dynamic / Runtime control of parallel units
 - Library provisioned set of chunks
 - Provisioning strategy e.g. HORZ or VERT
- HORZ striping on WS_OPT for throughput
- Stream states are persistent!
liblightnvm: Append-Only Streams

- Traditional IO Semantics
 - `aos_write(sid, *buf, count)`
 - `aos_read(sid, *buf, count)`
 - `aos_pread(sid, *buf, count, read)`
- Agnostic to media and spec. variation
- Encapsulates geometry and addressing
liblightnvm: Append-Only Streams

DEMO

https://asciinema.org/a/ljb7fhentCKmRCd79G8cbYpaic
liblightnvm: Summary
Roadmap: Persistent CMB interface

- **Raw**
 - `nvm_cmb_write`
 - `nvm_cmd_read`

- **IO oriented**
 - `nvm_cmb_io_write`
 - `nvm_cmb_io_read`
 - `nvm_cmd_io_push`

```
struct nvm_cmb_attr {
    size_t nbytes;///< # nbytes of PMR
    size_t nbytes_pfail;///< # nbytes of PMR, persisted under pfail
    int status;///< # Health status of PMR
};
```
Roadmap: Spec. support

- Expand support in the evolving spec. space
 - Denali / OCSSD 2.1 / NVMe
 - Raw support via nvm_cmd_*
 - Encapsulation in upper-level abstractions
 - Virtual Block and Append-Only interfaces
Roadmap: Related tools

- **nvm_ui**
 - Web interface for management of PBLK instances, NVMoF targets, subsystems and ports
 - Visualization of IO stats. in real-time

- **CIJOE**
 - Toolchain for QA, test, and development
Roadmap: Collaboration

What are you missing from liblightnvm?
Roadmap: Collaboration

- What are you missing from liblightnvm?
- Regarding SGL support, would you prefer …
 - An array of buffers
 - A list of SGL segments
 - Iterator / function-pointer
 - Something else? All of them?
Thanks

SRC http://github.com/OpenChannelSSD/liblightnvm
DOC http://lightnvm.io/liblightnvm
MAIL slund@cnexlabs.com

www.linkedin.com/in/simonlund