September 24-27, 2018
Santa Clara, CA

www.storagedeveloper.org

Virtual BDEVSs:
The Secret to Customizing SPDK

Paul Luse, Intel Corporation
Fiona Trahe, Intel Corporation

Agenda

d What Is SPDK?

1 Block Device Layer

3 Virtual Block Devices

3 The PassThru Vbev Module

3 The Crypo Vbdev Module via DPDK
d Future Work

S D @ 2018 Storage Developer Conference. © Insert Your Company Name. All Rights Reserv

What Is SPDK?

Storage 5 Open Source Software
Derformance * Optimized for latest generation CPUs and SSDs
Development « Software building blocks (BSD licensed)
(It * Designed to extract maximum performance from
: non-volatile media
Scalable and Efficient Software Ingredients
: » User space, lockless, polled-mode components
Available via spdk.io « Up to millions of IOPS per core

"

* Minimize average and tail latencies

S D @ 2018 Storageg Developer Conference. © Insert Your Company Name. All Rights F

SPDK ARCHITECTURE

Storage
Protocols

NVMe-oF*

Target

TCP

vhost-nvme
Target

vhost-scsi

Target

vhost-blk

In Progress

/ Integration \

Target

Linux nbd

/

\

Block Device Abstraction (bdev)

Cinder

VPP TCP/IP
RocksDB
Ceph

. Logical DPDK BlobFS
Blobstore
Linux Ceph PMDK virtio :
scsifotg J >
a . . N\
NVMe Devices virtio
. . Intel® QuickData
Drivers NVMe-oF‘ NF:/CIT]: virtio- vhost- Techno?o Driver
Initiator TCP) PCle user gy
Driver
_

S D @ 2018 Storage Developer Conference. © Insert Your Company Name. All Right:

QEMU

/ Tools \

fio

o

nvme-cli

spdk-cli

S D @ 2018 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Bdev Layer Terminology

Bdev Layer: The entire block device abstraction layer in the code.
The public interface is in include/spdk/bdev.h and the implementation
IS In lib/bdev.

Bdev Module: Block devices have types (NVMe, Malloc, AIO, etc.).
The code to implement a specific type of block device is called a
module.

Bdev: An individual block device that may be sent I/O requests..
Base bdevs: A bdev that handles 1/O requests directly, as opposed to
a virtual bdev..

Virtual bdevs (aka vbdevs): A bdev that handles I/O requests by
routing them to other bdevs. Note: This is only a distinction in
terminology - all bdevs are represented in the code using the same
structure and interface.

Block device layer: 50K Foot View

Application]

<SPDK Defined Block API> e Automatic queueing of I/0O requests in response to queue full
or out-of-memory conditions

Block Device Layer

Virtual bdevs

e Hot remove support, even while 1/0 traffic is occurring.

e |/O statistics such as bandwidth and latency

/O

* Device reset support and I/O timeout tracking

. uality of Service Features
<Driver Specific API> Q y

[Drivers]
S D @ 2018 Storage Developer Conference. © Insert Your Company Name. All Rig

Block device layer: 1K Foot View

Block Device Layer

L Bdev Manager [I/0 pool][small buffs][large buffs][zero buff]

BdeV][descriptors][bdev/vbdev []][Flags/counters][1/O func *]

Channel Channel Channel

<Driver Specific API>

/0

Virtual block devices: 50K Foot View

[Application

<SPDK Defined Block API>

Block Device Layer e Canrepresent multiple base bdevs and surface a single vbdev

* Canintercept I/O on the way down and the way back

e Same struct as Base bdevs, struct spdk_bdev

* Well defined API enables isolated IP for value added services

<Driver Specific API>

[Drivers]
S D @ 2018 Storage Developer Conference. © Insert Your Company Name. All Ric

/0

Virtual block devices: Examples

[Application °

<SPDK Defined Block API>

Block Device Layer

<Driver Specific API>

[Drivers]

S D @ 2018 Storage Developer Conference. © Insert Your Company Name. All Rig

Logical Volumes: Virtual bdevs carved out of non-contiguous
regions on a larger backing bdev implemented using SPDK's
Blobstore.

Error: Enables the ability to inject errors at the block device
layer API level.

GPT: Surfaces GPT partitions as separate BDEVs.

PassThru: An example/template for creating new VBDEV
modules. Lots more on this in tomorrow’s lab.

Crypto: At rest data encryption via the DPDK Cryptodev
Framework.

The passthru vbdev module -
Initialization

static struct spdk_bdev_module passthru_if = {
.name = "passthru”,
.module_init = vbdev passthru_init, Bdev Module
.config text = vbdev_passthru_get_spdk_running_config, .
.get_ctx_size = vbdev_passthru_get ctx_size, Function Table

.examine = vbdev_passthru_examine,
.module_fini = vbdev_passthru_finish

/* When we register our bdev this is how we specify our entry points. */
static const struct spdk _bdev_fn_table vbdev_passthru_fn_table = {
.destruct vbdev_passthru_destruct,
Bdev ‘ .submit_request
: .io_type_supported
Function Table 20T 16, channel

vbdev_passthru_submit_request,

vbdev_passthru_io_type_supported,

vbdev_passthru_get_io_channel,
.dump_info_json vbdev_passthru_info_config_json,
.write_config_ json vbdev_passthru_write_json_config,

b

S D @ 2018 Storage Developer Conference. © Insert Your Company Name. All Rights Re

The passthru vbdev module -
initialization

/* on init, just parse config file and build The bdev layer calls this entry
*list of pt vbdevs and bdev name pairs. .
* point where early setup stuff can

static int i
Vbdev passthru_init(void) bg o.lone, in the template the conf
‘ file is parsed.

i /¥ Because we specified this function in our pt bdev function table when we
Anytlme da new bdev * registered our pt bdev, we'll get this call anytime a new bdev shows up.
ShOWS up each vbdev * Here we need to decide if we care about it and if so what to do. We

’

* bdev, here's where we do 1it.
. . . */
to take action in its ctatic void

examine() caIIback. vbdev_passthru_examine(struct spdk_bdev *bdev)

S D @ 2018 Storage Developer Conference. © Insert Your Company Name. All Rights R

* parsed the config file at init so we check the new bdev against the List
module gets a cha nce * we built up at that time and if the user configured us to attach to this

The passthru vbdev module - examine

rc = spdk_bdev_module claim_bdev(bdev, pt node-s>base desc, pt_node->pt_bdev.module);
if (rc) {
SPDK_ERRLOG("could not claim bdev %s\n", spdk_bdev_get name(bdev));
spdk_bdev_close(pt_node-»base_desc);
TAILQ REMOVE(&g pt_nodes, pt_node, link);

free(pt_node-spt_bdev.name); Too many steps to show
free(pt_node);
) break; all of them here, but as
SPDK_NOTICELOG("bdev claimed\n"); part of the examine() call,
rc = spdk_vbdev_register(&pt_node-»>pt_bdev, &bdev, 1); the Vbdev module ClaimS
if (rc) { .
SPDK_ERRLOG("could not register pt_bdev\n"); a base bdeV and r’egISteI"S
spdk_bdev_close(pt_node-»base_desc); .
TAILQ REMOVE (&g pt nodes, pt_node, link); a virtual bdeuv..

free(pt_node-spt_bdev.name);
free(pt_node);
break;

S D @ 2018 Storage Developer Conference. © Insert Your Company Name. All Rights R

The passthru vbdev module
Submission

/* Called when someone above submits IO to this pt vbdev. We're simply passing it on here
* via SPDK IO calls which in turn allocate another bdev IO and call our cpl callback provided
* below along with the original bdiv_io so that we can complete it once this IO completes.
*/

static void

vbdev_passthru_submit_request(struct spdk io channel *ch, struct spdk bdev_io *bdev_io)
{

struct vbdev_passthru *pt_node = SPDK _CONTAINEROF(bdev_io->»bdev, struct vbdev_passthru, pt_bdev);
struct pt_io_channel *pt_ch = spdk_io_channel_get_ctx(ch);
struct passthru_bdev_io *io_ctx = (struct passthru_bdev_io *)bdev_io->driver_ctx;

int rc = 13

SmeiSSion /* Setup a per I0 context value; we don't do anything with it in the vbdev other
* than confirm we get the same thing back in the completion callback just to
*
Interce pt */demonstr‘ate.

io_ctx->test = ©@x5a;

switch (bdev_io->type) {
case SPDK_BDEV_IO TYPE_READ:
rc = spdk_bdev_readv_blocks(pt_node->base_desc, pt_ch->base_ch, bdev_io->u.bdev.iovs,
bdev_io-»u.bdev.iovcnt, bdev_io->u.bdev.offset_blocks,
bdev_io-»u.bdev.num_blocks, _pt_complete_io,
bdev_io);

S D @ 2018 Storage Developer Conference. © Insert Your Company Name. All Rights R

The passthru vbdev module - completion

/* Completion callback for IO that were issued from this bdev. The original bdev_io
* is passed in as an arg so we'll complete that one with the appropriate status
* and then free the one that this module issued.

*/

static void
_pt_complete_io(struct spdk_bdev_io *bdev_io, bool success, void *cb_arg)

Completion
Intercept

)

S D @ 2018 Storage Developer Conference. © Insert Your Company Name. All Rights Re

struct spdk bdev_io *orig io = cb_arg;
int status = success ? SPDK_BDEV_IO_STATUS_SUCCESS : SPDK_BDEV_IO_STATUS_FAILED;
struct passthru_bdev_io *io_ctx = (struct passthru_bdev_io *)orig_io->driver_ctx;

/* We setup this value in the submission routine, just showing here that it is
* passed back to us.
*/
if (io_ctx->test != @x5a) {
SPDK_ERRLOG("Error, original IO device_ctx is wrong! @x%x\n",
io_ctx-»>test);

}

/* Complete the original IO and then free the one that we created here
* as a result of issuing an IO via submit_regeust.
*/

spdk_bdev_io_complete(orig_io, status);

spdk_bdev_free_io(bdev_io);

he Crypto Vbdev Module

7 Relies on DPDK CryptoDev

3 Initially supports software encryption AESNI
multi-buffer CBC

1 Also supports hardware offload with Intel®
QuickAssist Technology (in validation still)

a3 Can be layred on any bdev or vbdev

S D @ 2018 Storage Developer Conference. © Insert Your Company Name. All Rights Reservec

The Crypto Vbdev Module

[Application

<SPDK Defined Block API>

DPDK

AESNI
PMD
CryptoDev

Block Device Layer

Crypto Operations

v

P
«

API QAT

<Driver Specific API>

[Drivers

S D @ 2018 Storage Developer Conference. © Insert Your Company Name. All R

Future Work: Compression from DPDK

S D @ 2018 Storage Developer Conference. © Insert Your Company Name. All Ric

dpdk/compressdev key features

- - o - -y - o o o oy - o o o oy - o o o oy - o o o oy - o o o oy

4 N \ N7 \N’ \N7 \
{Asynchronous{ Chained :Compression : Compression { Checksum { Hash :
1 burst APl Mbufs 1 Algorithms Levels I 1 Generation
| | | | | | |
L e e 1 I |
: : | | -1: PMD Default | B k
,fosupport - Toallow , Deflate - FLCRC3Z - #ISHAL
1 HW & SW compression ! I crastest #2 Adler32 : :
I acceleration. ! I LZS ' ' I #2 SHA256 1
| | for data 1 I I #3 Combined - | |
: : grea‘ter than : :) : AdIer32_CRC32 : :
I I 64K . I I I I I
| | | | | | |
I I I I 9: Best Ratio | I I
| | | | | | |
\ \ | | \ \ |
N VA N\

compressdev components
[Compression]

Application
.~ DPDK : y N “\
DPDK Compression Framework API Components
[Device Mgmnt] [Stats &] stream Mgmnt)
(Operation Mgmn{ Capabilities (Burst

compressdev
Poll Mode Drivers

\ ISA-L | zuB | | QAT Octeontx)

- en e e s s s e e s o o =

[QAT H/W] [Octeontx] Hardware

Accelerators

S D @ 2018 Storage Developer Conference. © Insert Your Company Name. Al = 5 19

Typical compressdev API flow

Application
Start

Allocate Op P(.:)Ol Device Config Queue Pair Device Start Create Private
src/dst memory Creation setup Xform

~Main Loop

% [Op allocate Build the Ops Enqueue Dequeue
’ ‘ ’ ‘ Burst ’ ‘ Burst

Free Private Stop Device Close Device Application
Xform End
S D @ 2018 Storage Developer Conference. © Insert Your Company Name. Al

Compression - stateless

Comepression
operation

Decompression
operation

Decompressed data

S D @ 2018 Storage Developer Conference. © Insert Your Company Na

S D @ 2018 Storage Developer Conference. © Insert Your Company Name. All Ri

	Virtual BDEVs: �The Secret to Customizing SPDK
	Agenda
	What Is SPDK?
	Slide Number 4
	Bdev Layer Terminology
	Block device layer: 50K Foot View
	Block device layer: 1K Foot View
	Virtual block devices: 50K Foot View
	Virtual block devices: Examples
	The passthru vbdev module - Initialization
	The passthru vbdev module - initialization
	The passthru vbdev module - examine
	The passthru vbdev module - Submission
	The passthru vbdev module - completion
	The Crypto Vbdev Module
	The Crypto Vbdev Module
	Future Work: Compression from DPDK
	dpdk/compressdev key features
	compressdev components
	Typical compressdev API flow
	Compression - stateless
	Slide Number 22

