L 1
. ~
P
~
Al s
’_"' -~
h /”’ “-“"“'-.. I 8
.
""-_‘““
™
-~ "’

4 F i September 24-27, 2018
2aih = Santa Clara, CA

)
‘i

www.storagedeveloper.org

How to Handle Security
Flaws In a Storage Product
Using Open Source Code

Jeremy Allison / Google / Samba Team



*Economics drive this.
-Underlying OS is Linux (usually) or FreeBSD.

*Unless you employ Linus or other notable names, you don’t have full
control over what goes into your product.

*You must have a process to coordinate with Open Source upstream
developers in order to ship secure products.

-At the very least, you need to know about vulnerabilities in the code
you're using, even if you don’t (or can’t) fix it yourself.



*Ensure the upstream project takes security seriously.

-This is not as common as you might think — do you have a contact point
If someone reports a security flaw to you ?

~https://www.linuxfoundation.orqg/blog/2018/04/software-security-is-a-
shared-responsibility/

*Even projects that do security well themselves have dependencies.

-Know what is going into your storage solution.


https://www.linuxfoundation.org/blog/2018/04/software-security-is-a-shared-responsibility/

-“Badlock” and industry-wide coordination.
-“Trust no one” (with apologies to the X-files).
«Sambacry.

-“Anything you can do, | can do better..”
*Google Project Zero bug.

-Practicing for the real thing.



*The first security flaw reported in Samba (1993) was
Immediately caught by Andrew Tridgell (tridge) — the original
author of the project.

-He stopped the mail list processing until he had a fix.
-Ensured the very next email contained the patch.
-Re-started mail list processing.

*Things are a little more difficult these days..



*Put a process in place to handle all security reports uniformly.
-Start with an email alias: security@samba.org

-Can be hard to do with a pure volunteer organization, but without it you're not
professional.

*Ability to get Common Vulnerability and Exposure (CVE) number is essential
for tracking.

-Linux distributions are your friends here, their security Teams can handle this
for you.



*Unless the Open Source project is large and important, no one will audit it
for free.

-Automated tools for static analysis and fuzzing are essential.
-A comprehensive test suite helps automate the testing needed.

*Basic code reviews from people with security experience will help catch the
worst errors.

-If you don’t have security experience, shipping code will soon teach you :-).



*Use gpg encrypted email to communicate with vulnerability reporters.
-Standard in the security world.

Insist on transparency with security researchers and in vulnerability
disclosure.

-Don’t try and hide anything — you’re not fooling anyone.
-Ignore vulnerability-sellers.

*Internal and external time-frames can differ, but try and stick to a schedule.



Insist on reproducible exploit to fully understand the threat.

-You don’t have to publish these !

*Don’t race for the “easy” fix.

-Take time, understand the issue and look for it in all areas of the code.
*Only fix the security bug.

-Don’t try and fold in other bug fixes for a security release.

ol iIMit haclk-norte / Conrdinate with vendaore



A

-“Badlock” was a protocol-level vulnerability in DCE-RPC (remote
call), used by all Microsoft interoperating products.

&

-Complex, and almost no one understood it (except exploiters, who might
have already been using it).

*Discovered indirectly during a Microsoft Interop Event by a proprietary
fuzzing tool.

*Tension occurred between commercial interests of employer of discovering
engineer and Samba project (my fault).

-Don’t let marketing people name buags :-).



-“Badlock” affected most SMB implementors, so coordination had
arranged across the entire storage industry.

<
-Knowledge of the bug started to leak.

-Attacks on Samba bugzilla by black-hats attempting to get early advantage.

-Personal contacts essential (reputation again). | started refusing to discuss
unless | personally recognized the phone number/voice.

-Seven months from discovery to coordinated released fixes. “90-day” window
would have killed us here.



7~

*Most of the press completely failed to understand or report on
the threat correctly.

-Most security “researchers” completely failed to understand or
report on the threat correctly.

*Worst-case scenario — thankless fix misunderstood by users
and anyone not intimately involved in the code.

-Hard to get management support.

Don’t try and create catchy names and logos for bugs.



*Tod Beardsley (security
researcher at Rapid?7)
tweeted:

“Microsoft
SMB: Wow,
what a week!

Samba: Hold
my beer”



*Caused when two secure subsystems - module loading and
named pipe services - were connected without sufficient input
checking.

-Code was in error for seven years.
-Externally reported.
-Unknown how much it had been exploited.

*Fix was a one-line change.



*Better security review would have caught this.
-Impossible to catch everything.

-Logic error, not language error (safer language would not
have helped).

*Tests both positive and negative would not have helped, they
would only have showed the named pipe module loading
worked or failed.

*Worst effect was non-upgradable embedded systems with old
unfixable versions.



*Project Zero Google security researcher Jann Horn (he of the
“Meltdown” and “Spectre” attacks) cut his teeth on a Samba
bug.

-Even though I'm a Google employee, we didn’t get any slack
-).
-“Borderline” exploit — race condition in pathname processing

(required slowing the server down with strace in order to hit the
race).

*Exposed generic design flaw in user-space server code.

~Goodness knows how or even if other servers have fixed this.



*Required redesign of all pathname processing.

~“Natural” way to fix this turned out to be covered by a software patent.
-Thankfully a superior solution was not covered by patents.
sImmediate fix took around one week.

-Then we discovered the fix broke one of the critical VFS modules.

.Module was created for the needs of the patent holder covering the original
solution :-).



*Ultimately took the full 90-day disclosure time, plus a 14-day extension, to
get the fix created, tested and back-ported to all vulnerable versions.

-Security work under time-pressure is when mistakes happen.

.l am ambivalent on deadlines, they ensure concentrated effort but can do
harm.

*Ensure you explore all combinations of design decisions for robustness (I
know, this is impossible :-).

-Code fail-safe. Just because “it can’'t happen” doesn’t mean someone won't
find a wayv to do it.



*Design flaws are the hardest problems to fix.
*Don’t try and argue / push back on vulnerabilities with security researchers.

-Even if you’re convinced you’re right, when they go public it will still
damage your project reputation.

-Work with them to agree on a mitigation strategy.

-Don’t be embarrassed to beg and grovel to get more time.



*No one rates security until they don’t have it. Even then, not
so much.

*The press WILL completely mess up all reporting — security
flaws are complex even for exports.

-“A flaw in Microsoft’s implementation of the Samba protocol..”
*Volunteer developers will get blamed and called fools.
*Personal contacts are essential for coordinating fixes.
*Security work is like ensuring the sewers stay open.

-No one notices until you falil.



*Prepare for massive overwhelming security failures in your
project.

-That way, when it happens (and it WILL happen) at least you
have a plan.

*Accept all reports, respond to all reports.

-Even if they appear insane.
“Untested code is broken code”

*There is no magic bullet / magic language that will protect
you.



s[ra@samba.org

sJra@google.com



	Slide Number 1
	All new storage products use Open Source
	Dealing with upstream vulnerabilities
	A story of three (Samba) flaws
	In the beginning
	Process, process, process
	Auditing / Code quality ?
	The reputation game
	How to respond
	Case study #1 – Bad, bad, badlock
	Badlock continued
	Badlock postmortem
	Case study #2 - Sambacry
	Case study #2 – Sambacry
	Sambacry postmortem
	Case study #3 – Google Project Zero
	Google Project Zero mitigation
	Google Project Zero mitigation
	Google Project Zero postmortem
	A thankless task
	Conclusion
	Questions and Comments ?

