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To copy or not to copy?
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ypical communication with the network

a3 Arriving packets are held in the kernel buffers

3 User process reading from the bsd socket -
copyout

3 Writing the data to a file (descriptor) — copyin

1 Lots of CPU cycles just to copy the data back
and forth
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Typical communication with the network
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Typical communication with the network
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Networks are faster and more reliable

a The larger the MTU (Maximum Transmission
Unit) the more data to copy

A Significant percentage of the CPU time can be
spent on copying alone
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To copy or not to copy?
Available alternatives
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Zero-copy

3 An attempt to avoid wasting the CPU cycles
3 Not a new concept

1 Typically utilising file descriptors for accessing
the data

3 Various implementations among various OSes
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Zero-copy and splice(2)

7 One side of the transfer has to be a pipe fd

A3 This is mostly due to what pipe buffers support
1 Two extra file descriptors per transfer

A Linux-specific syscall
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Zero-copy and sendfile(2)

A Input file descriptor must allow mmap (typically a
file)
3 Obviously, It cannot receive
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To copy or not to copy?
Available alternatives
Introducing the 1o vector
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Engaging a kernel-level structure - mbuf

1 Simple structure holding a buffer pointer in
FreeBSD

a3 Primarily used in IPC, so it facilitates certain
network communication features

3 mbufs can be chained together in a list (mbuf
chain)

1 Chains and also be linked (packet queue)
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mbuf chains

mbuf

— packet queue
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Entering user space —io vector

1 Follows the same scatter-gather pattern utilising
a list of entries

7 Gets translated to an mbuf chain when In the
kernel space

3 Not everything Is needed in the user space —
different buffer types can be treated differently
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Entering user space — 10 vector (contd.)

struct i1ov_entry {
struct 1ov_entry *next;
enum i1ov_entry_ type type;
size_t size;
size_t length;

}:

struct iovector {
struct iov_entry *first;
struct iov_entry *last;
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|O Vector

iovector iov_entry iov_entry iov_entry
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Memory entry

1 Represents a classic memory buffer (void*, size)

a3 The buffer is allocated in the user space, so it
can be modified

1 Passing it down to the kernel is going to make its
copy (in mbufs)
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Memory entry (contd.)

struct 1ov_entry _memory {
struct i1ov_entry *next;
enum iov_entry_ type type; /* = memory */
size_t size;
size_t length;
char data[];
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Memory entry (contd.)

struct iov_entry_memory
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Kernel entry

1 Represents a buffer living in the kernel space
3 Not accessible from the user space directly

1 Passed down to the kernel space does not need
a copy

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved.



Kernel entry

1 Represents a buffer living in the kernel space
3 Not accessible from the user space directly

1 Passed down to the kernel space does not need
a copy

a3 Accessible through a file descriptor
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Kernel entry (contd.)

struct i1ov_entry kernel {
struct i1ov_entry *next;
enum i1ov_entry type type; /* = kernel */
size_t size;
size_t length;
int fd;
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Kernel entry (contd.)

struct iov_entry_kernel
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Kernel entry (contd.)

3 A file descriptor needs its struct file* in the kernel

3 An mbuf chain can be treated as a pseudo-file
and support the basic operations

3 At the user level it Is just passed around
3 At the kernel level it can be used for:
Reading an writing (file)
Recelving and sending (socket)
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Kernel entry (contd.)

struct iov_entry_kernel

fd
USER SPACE
KERNEL SPACE
m_next m_next m_next —uL m_next
m_nextpkt || m_nextpkt || m_nextpkt || m_nextpkt

v

struct file*

mbuf chain pseudo-file
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To copy or not to copy?
Available alternatives
Introducing the 1o vector
Utilising the 10 vector
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Flexibility through chaining

3 Both entry types can represent any blob of data:
Packet header allocated in the user space
Contents read from a file

a0 Building a packet is much easier (header,
request/response, padding can all be separate)
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Flexibility through chaining (contd.)

int error;

struct iovector vec;

struct iov_entry_memory hdr, res;
struct iov_entry_kernel data;

error = lovinit(&vec);
CLEANUP_ON_ERROR(error);

error = lovCreateMemoryEntry(&hdr, /* size */);
CLEANUP_ON_ERROR(error);

/* Prepare the header */

error = lovPushBack(&vec, (struct iov_entry*)&hdr);
CLEANUP_ON_ERROR(error);

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Rese




Flexibility through chaining (contd.)

error = lovCreateMemoryEntry(&res, /* size */);
CLEANUP_ON_ERROR(error);

/* Prepare the response */

error = lovPushBack(&vec, (struct iov_entry*)&hdr);
CLEANUP_ON_ERROR(error);

error = lovCreateKernelEntry(&data, /* size */);
CLEANUP_ON_ERROR(error);

/* Read the data */

error = lovPushBack(&vec, (struct iov_entry*)&data);
CLEANUP_ON_ERROR(error);
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Flexibility through chaining (contd.)

iov_entry_memory  iov_entry_kernel

iovector

P

next
type

HEADER RESPONSE DATA
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Flexibility through splitting and converting

3 An Io vector can have its parts split off and freed
when no longer needed

1 Kernel entries can be pulled up to the user
space

3 Memory entries can be pushed down, too
7 New syscalls are required
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Flexibility through splitting and converting

int error;
struct iovector received, hdr_vec, req_vec, data;
struct smb2_header *header;

/* Vector received - now, get the header */

error = lovPullup(&received, sizeof(*header));
CLEANUP_ON_ERROR(error);

error = lovSplit(&receive, sizeof(*header), &hdr_vec);
CLEANUP_ON_ERROR(error);

header = lovMemOrigin(&hdr_vec);

/* Process the header */
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Replacing a buffer with an io vector

7 send/recv/read/write could take an 10 vector
Instead of a buffer

3 This enables keeping a part or all of the data
read/received in the kernel

7 We can always pull up when needed
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To copy or not to copy?
Available alternatives
Introducing the 1o vector
Utilising the 10 vector
Use cases
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Use case — large SMB2 write (1/5)

3 A packet Is received in a minimum-sized iovector
a3 The header says it's a write request

USER SPACE
KERNEL SPACE
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Use case — large SMB2 write (2/5)

a3 Pull up the request (fixed-size)

FILE DATA

USER SPACE

KERNEL SPACE

mbufs
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Use case — large SMB2 write (3/5)

1 Split off the SMB2 packet to a separate iovector
1 File data Is separate now, too

USER SPACE l

KERNEL SPACE

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserve



Use case — large SMB2 write (4/5)

d Free what’s no longer needed
3 Write to the file — mbufs will be moved in-kernel

..............................................

HEADER | REQUEST FILE DATA
USER SPACE
KERNEL SPACE
mbufs
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Use case — large SMB2 write (5/5)

7 The data written to the file has never left the
kernel

1 The packet can be received to the “minimum
necessary” iovector (only the SMB2 header In
user space)

1 What's been processed and no longer needed
can be released early
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Use case — SMB3 decryption (1/6)

3 A packet Is received in a minimum-sized iovector
a3 The header is a TRANSFORM_ HEADER

USER SPACE
KERNEL SPACE
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Use case — SMB3 decryption (2/6)

a3 Decrypt the rest first
1 Split off and free TRANSFORM_ HEADER

T™H THE REST
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Use case — SMB3 decryption (3/6)

a3 Pull up SMB2 header (it’'s decrypted now)
0 The header says it’'s a change notify request

THE REST

USER SPACE

KERNEL SPACE

mbufs
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Use case — SMB3 decryption (4/6)

a3 Pull up the request

USER SPACE

KERNEL SPACE
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Use case — SMB3 decryption (5/6)

1 Execute and free the packet

KERNEL SPACE
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Use case — SMB3 decryption (6/6)

3 Decryption can be done both over the user and
kernel space buffers

7 Sometimes we end up pulling up everything
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To copy or not to copy?
Available alternatives
Introducing the 1o vector
Utilising the 10 vector
Use cases

The future
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This Is today, what’s tomorrow?

7 How difficult would 1t be with the Linux kernel?
7 RDMA and the like

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reservec



Linux kernel

3 There Is no mbuf in Linux, some sources say
sk_buff Is the equivalent

3 sk_buff is much bigger and not necessarily
useful here

3 Iov_iter appears to fit the bill much better
1 BSD-style UIO is in place
3 It would still require new syscalls
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RDMA

3 If an mbuf chain can be a pseudo-file, then any
data coming out of an RDMA-enabled device
could be, too

3 Functions implementing the file ops would have
to be different

7 Another iovector entry type would be needed
7 Perhaps something for a recommendation?
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Thank youl!

Questions?

rafal.szczesniak@dell.com
@emc.com

Credits: Brian Koropoff
(for laying the groundwork of the kernel code)
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