September 24-27, 2018
Santa Clara, CA

www.storagedeveloper.org

Use only what you really need —
Kernel space buffers in server process

Rafal Szczesniak
DellEMC / Isilon

To copy or not to copy?

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Rese

ypical communication with the network

a3 Arriving packets are held in the kernel buffers

3 User process reading from the bsd socket -
copyout

3 Writing the data to a file (descriptor) — copyin

1 Lots of CPU cycles just to copy the data back
and forth

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved.

Typical communication with the network

USER SPACE
KERNEL SPACE
Buffer
A
Receive
NETWORK INTERFACE FILE

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Rese

Typical communication with the network

A
Copyout
USER SPACE
KERNEL SPACE
Buffer
A
Receive
NETWORK INTERFACE FILE

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Res

Typical communication with the network

- Processmg -

A
Copyout
USER SPACE
KERNEL SPACE
Buffer
A
Receive
NETWORK INTERFACE FILE

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Res

Typical communication with the network

- Processmg -

A
Copyout Copyin
USER SPACE
KERNEL SPACE
\ 4
Buffer Buffer
A
Receive
NETWORK INTERFACE FILE

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Res

Typical communication with the network

- Processmg -

A
Copyout Copyin
USER SPACE
KERNEL SPACE
\ 4
Buffer Buffer
A
Receive Write
\ 4
NETWORK INTERFACE FILE

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon.

Networks are faster and more reliable

a The larger the MTU (Maximum Transmission
Unit) the more data to copy

A Significant percentage of the CPU time can be
spent on copying alone

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved.

To copy or not to copy?
Available alternatives

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Rese

Zero-copy

3 An attempt to avoid wasting the CPU cycles
3 Not a new concept

1 Typically utilising file descriptors for accessing
the data

3 Various implementations among various OSes

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved.

Zero-copy and splice(2)

7 One side of the transfer has to be a pipe fd

A3 This is mostly due to what pipe buffers support
1 Two extra file descriptors per transfer

A Linux-specific syscall

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved.

Zero-copy and sendfile(2)

A Input file descriptor must allow mmap (typically a
file)
3 Obviously, It cannot receive

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved

To copy or not to copy?
Available alternatives
Introducing the 1o vector

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reservec

Engaging a kernel-level structure - mbuf

1 Simple structure holding a buffer pointer in
FreeBSD

a3 Primarily used in IPC, so it facilitates certain
network communication features

3 mbufs can be chained together in a list (mbuf
chain)

1 Chains and also be linked (packet queue)

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved.

mbuf chains

mbuf

— packet queue

S D @ 2018 Storage Developer Conference. © DellEMC / Isilc

Entering user space —io vector

1 Follows the same scatter-gather pattern utilising
a list of entries

7 Gets translated to an mbuf chain when In the
kernel space

3 Not everything Is needed in the user space —
different buffer types can be treated differently

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved.

Entering user space — 10 vector (contd.)

struct i1ov_entry {
struct 1ov_entry *next;
enum i1ov_entry_ type type;
size_t size;
size_t length;

}:

struct iovector {
struct iov_entry *first;
struct iov_entry *last;

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Rese

|O Vector

iovector iov_entry iov_entry iov_entry

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Righ

Memory entry

1 Represents a classic memory buffer (void*, size)

a3 The buffer is allocated in the user space, so it
can be modified

1 Passing it down to the kernel is going to make its
copy (in mbufs)

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved.

Memory entry (contd.)

struct 1ov_entry _memory {
struct i1ov_entry *next;
enum iov_entry_ type type; /* = memory */
size_t size;
size_t length;
char data[];

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Rese

Memory entry (contd.)

struct iov_entry_memory

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rig

Kernel entry

1 Represents a buffer living in the kernel space
3 Not accessible from the user space directly

1 Passed down to the kernel space does not need
a copy

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved.

Kernel entry

1 Represents a buffer living in the kernel space
3 Not accessible from the user space directly

1 Passed down to the kernel space does not need
a copy

a3 Accessible through a file descriptor

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved.

Kernel entry (contd.)

struct i1ov_entry kernel {
struct i1ov_entry *next;
enum i1ov_entry type type; /* = kernel */
size_t size;
size_t length;
int fd;

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Rese

Kernel entry (contd.)

struct iov_entry_kernel

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Righ

Kernel entry (contd.)

3 A file descriptor needs its struct file* in the kernel

3 An mbuf chain can be treated as a pseudo-file
and support the basic operations

3 At the user level it Is just passed around
3 At the kernel level it can be used for:
Reading an writing (file)
Recelving and sending (socket)

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved.

Kernel entry (contd.)

struct iov_entry_kernel

fd
USER SPACE
KERNEL SPACE
m_next m_next m_next —uL m_next
m_nextpkt || m_nextpkt || m_nextpkt || m_nextpkt

v

struct file*

mbuf chain pseudo-file

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights R

To copy or not to copy?
Available alternatives
Introducing the 1o vector
Utilising the 10 vector

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved

Flexibility through chaining

3 Both entry types can represent any blob of data:
Packet header allocated in the user space
Contents read from a file

a0 Building a packet is much easier (header,
request/response, padding can all be separate)

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved.

Flexibility through chaining (contd.)

int error;

struct iovector vec;

struct iov_entry_memory hdr, res;
struct iov_entry_kernel data;

error = lovinit(&vec);
CLEANUP_ON_ERROR(error);

error = lovCreateMemoryEntry(&hdr, /* size */);
CLEANUP_ON_ERROR(error);

/* Prepare the header */

error = lovPushBack(&vec, (struct iov_entry*)&hdr);
CLEANUP_ON_ERROR(error);

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Rese

Flexibility through chaining (contd.)

error = lovCreateMemoryEntry(&res, /* size */);
CLEANUP_ON_ERROR(error);

/* Prepare the response */

error = lovPushBack(&vec, (struct iov_entry*)&hdr);
CLEANUP_ON_ERROR(error);

error = lovCreateKernelEntry(&data, /* size */);
CLEANUP_ON_ERROR(error);

/* Read the data */

error = lovPushBack(&vec, (struct iov_entry*)&data);
CLEANUP_ON_ERROR(error);

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Rese

Flexibility through chaining (contd.)

iov_entry_memory iov_entry_kernel

iovector

P

next
type

HEADER RESPONSE DATA

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights

Flexibility through splitting and converting

3 An Io vector can have its parts split off and freed
when no longer needed

1 Kernel entries can be pulled up to the user
space

3 Memory entries can be pushed down, too
7 New syscalls are required

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved.

Flexibility through splitting and converting

int error;
struct iovector received, hdr_vec, req_vec, data;
struct smb2_header *header;

/* Vector received - now, get the header */

error = lovPullup(&received, sizeof(*header));
CLEANUP_ON_ERROR(error);

error = lovSplit(&receive, sizeof(*header), &hdr_vec);
CLEANUP_ON_ERROR(error);

header = lovMemOrigin(&hdr_vec);

/* Process the header */

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Rese

Replacing a buffer with an io vector

7 send/recv/read/write could take an 10 vector
Instead of a buffer

3 This enables keeping a part or all of the data
read/received in the kernel

7 We can always pull up when needed

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved.

To copy or not to copy?
Available alternatives
Introducing the 1o vector
Utilising the 10 vector
Use cases

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved.

Use case — large SMB2 write (1/5)

3 A packet Is received in a minimum-sized iovector
a3 The header says it's a write request

USER SPACE
KERNEL SPACE

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved

Use case — large SMB2 write (2/5)

a3 Pull up the request (fixed-size)

FILE DATA

USER SPACE

KERNEL SPACE

mbufs

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Rese

Use case — large SMB2 write (3/5)

1 Split off the SMB2 packet to a separate iovector
1 File data Is separate now, too

USER SPACE l

KERNEL SPACE

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserve

Use case — large SMB2 write (4/5)

d Free what’s no longer needed
3 Write to the file — mbufs will be moved in-kernel

..

HEADER | REQUEST FILE DATA
USER SPACE
KERNEL SPACE
mbufs

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved.

Use case — large SMB2 write (5/5)

7 The data written to the file has never left the
kernel

1 The packet can be received to the “minimum
necessary” iovector (only the SMB2 header In
user space)

1 What's been processed and no longer needed
can be released early

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved.

Use case — SMB3 decryption (1/6)

3 A packet Is received in a minimum-sized iovector
a3 The header is a TRANSFORM_ HEADER

USER SPACE
KERNEL SPACE

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reservec

Use case — SMB3 decryption (2/6)

a3 Decrypt the rest first
1 Split off and free TRANSFORM_ HEADER

T™H THE REST

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved

Use case — SMB3 decryption (3/6)

a3 Pull up SMB2 header (it’'s decrypted now)
0 The header says it’'s a change notify request

THE REST

USER SPACE

KERNEL SPACE

mbufs

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reservec

Use case — SMB3 decryption (4/6)

a3 Pull up the request

USER SPACE

KERNEL SPACE

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights R

Use case — SMB3 decryption (5/6)

1 Execute and free the packet

KERNEL SPACE

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Rese

Use case — SMB3 decryption (6/6)

3 Decryption can be done both over the user and
kernel space buffers

7 Sometimes we end up pulling up everything

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved.

To copy or not to copy?
Available alternatives
Introducing the 1o vector
Utilising the 10 vector
Use cases

The future

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved.

This Is today, what’s tomorrow?

7 How difficult would 1t be with the Linux kernel?
7 RDMA and the like

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reservec

Linux kernel

3 There Is no mbuf in Linux, some sources say
sk_buff Is the equivalent

3 sk_buff is much bigger and not necessarily
useful here

3 Iov_iter appears to fit the bill much better
1 BSD-style UIO is in place
3 It would still require new syscalls

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved.

RDMA

3 If an mbuf chain can be a pseudo-file, then any
data coming out of an RDMA-enabled device
could be, too

3 Functions implementing the file ops would have
to be different

7 Another iovector entry type would be needed
7 Perhaps something for a recommendation?

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved.

Thank youl!

Questions?

rafal.szczesniak@dell.com
@emc.com

Credits: Brian Koropoff
(for laying the groundwork of the kernel code)

S D @ 2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Rese

	Use only what you really need – �Kernel space buffers in server process
	Slide Number 2
	Typical communication with the network
	Typical communication with the network
	Typical communication with the network
	Typical communication with the network
	Typical communication with the network
	Typical communication with the network
	Networks are faster and more reliable
	Slide Number 10
	Zero-copy
	Zero-copy and splice(2)
	Zero-copy and sendfile(2)
	Slide Number 14
	Engaging a kernel-level structure - mbuf
	mbuf chains
	Entering user space – io vector
	Entering user space – io vector (contd.)
	IO Vector
	Memory entry
	Memory entry (contd.)
	Memory entry (contd.)
	Kernel entry
	Kernel entry
	Kernel entry (contd.)
	Kernel entry (contd.)
	Kernel entry (contd.)
	Kernel entry (contd.)
	Slide Number 29
	Flexibility through chaining
	Flexibility through chaining (contd.)
	Flexibility through chaining (contd.)
	Flexibility through chaining (contd.)
	Flexibility through splitting and converting
	Flexibility through splitting and converting
	Replacing a buffer with an io vector
	Slide Number 37
	Use case – large SMB2 write (1/5)
	Use case – large SMB2 write (2/5)
	Use case – large SMB2 write (3/5)
	Use case – large SMB2 write (4/5)
	Use case – large SMB2 write (5/5)
	Use case – SMB3 decryption (1/6)
	Use case – SMB3 decryption (2/6)
	Use case – SMB3 decryption (3/6)
	Use case – SMB3 decryption (4/6)
	Use case – SMB3 decryption (5/6)
	Use case – SMB3 decryption (6/6)
	Slide Number 49
	This is today, what’s tomorrow?
	Linux kernel
	RDMA
	Thank you!�Questions?�

