
2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 1

Use only what you really need –
Kernel space buffers in server process

Rafal Szczesniak
DellEMC / Isilon

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 2

To copy or not to copy?
Available alternatives
Introducing the io vector
Utilising the io vector
Use cases
The future

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 3

Typical communication with the network

 Arriving packets are held in the kernel buffers
 User process reading from the bsd socket -

copyout
 Writing the data to a file (descriptor) – copyin
 Lots of CPU cycles just to copy the data back

and forth

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 4

Typical communication with the network

NETWORK INTERFACE

USER SPACE

FILE

Receive

KERNEL SPACE

Buffer

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 5

Typical communication with the network

NETWORK INTERFACE

Copyout
USER SPACE

FILE

Receive

KERNEL SPACE

Buffer

Buffer

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 6

Typical communication with the network

NETWORK INTERFACE

Copyout
USER SPACE

FILE

Receive

KERNEL SPACE

Processing

Buffer

Buffer Buffer

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 7

Typical communication with the network

NETWORK INTERFACE

Copyout
USER SPACE

FILE

Receive

KERNEL SPACE

Processing

Copyin

Buffer

Buffer Buffer

Buffer

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 8

Typical communication with the network

NETWORK INTERFACE

Copyout
USER SPACE

FILE

Receive

KERNEL SPACE

Processing

Copyin

Write

Buffer

Buffer Buffer

Buffer

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 9

Networks are faster and more reliable

 The larger the MTU (Maximum Transmission
Unit) the more data to copy

 Significant percentage of the CPU time can be
spent on copying alone

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 10

To copy or not to copy?
Available alternatives
Introducing the io vector
Utilising the io vector
Use cases
The future

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 11

Zero-copy
 An attempt to avoid wasting the CPU cycles
 Not a new concept
 Typically utilising file descriptors for accessing

the data
 Various implementations among various OSes

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 12

Zero-copy and splice(2)
 One side of the transfer has to be a pipe fd
 This is mostly due to what pipe buffers support
 Two extra file descriptors per transfer
 Linux-specific syscall

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 13

Zero-copy and sendfile(2)
 Input file descriptor must allow mmap (typically a

file)
 Obviously, it cannot receive

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 14

To copy or not to copy?
Available alternatives
Introducing the io vector
Utilising the io vector
Use cases
The future

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 15

Engaging a kernel-level structure - mbuf
 Simple structure holding a buffer pointer in

FreeBSD
 Primarily used in IPC, so it facilitates certain

network communication features
 mbufs can be chained together in a list (mbuf

chain)
 Chains and also be linked (packet queue)

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 16

mbuf chains
mbuf

m_next
m_nextpkt

m_next
m_nextpkt

m_next
m_nextpkt

m_next
m_nextpkt

chain

m_next
m_nextpkt

m_next
m_nextpkt

m_next
m_nextpkt

m_next
m_nextpkt

chain

packet queue

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 17

Entering user space – io vector
 Follows the same scatter-gather pattern utilising

a list of entries
 Gets translated to an mbuf chain when in the

kernel space
 Not everything is needed in the user space –

different buffer types can be treated differently

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 18

Entering user space – io vector (contd.)
struct iov_entry {

struct iov_entry *next;
enum iov_entry_type type;
size_t size;
size_t length;

};

struct iovector {
struct iov_entry *first;
struct iov_entry *last;

};

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 19

IO Vector

iovector

first
last

next
type

iov_entry

next
type

next
type

iov_entry iov_entry

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 20

Memory entry
 Represents a classic memory buffer (void*, size)
 The buffer is allocated in the user space, so it

can be modified
 Passing it down to the kernel is going to make its

copy (in mbufs)

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 21

Memory entry (contd.)
struct iov_entry_memory {

struct iov_entry *next;
enum iov_entry_type type; /* = memory */
size_t size;
size_t length;
char data[];

};

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 22

Memory entry (contd.)

next

type = memory

struct iov_entry_memory

size

length

data

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 23

Kernel entry
 Represents a buffer living in the kernel space
 Not accessible from the user space directly
 Passed down to the kernel space does not need

a copy

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 24

Kernel entry
 Represents a buffer living in the kernel space
 Not accessible from the user space directly
 Passed down to the kernel space does not need

a copy
 Accessible through a file descriptor

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 25

Kernel entry (contd.)
struct iov_entry_kernel {

struct iov_entry *next;
enum iov_entry_type type; /* = kernel */
size_t size;
size_t length;
int fd;

};

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 26

Kernel entry (contd.)

next

type = kernel

struct iov_entry_kernel

size

length

fd

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 27

Kernel entry (contd.)
 A file descriptor needs its struct file* in the kernel
 An mbuf chain can be treated as a pseudo-file

and support the basic operations
 At the user level it is just passed around
 At the kernel level it can be used for:
Reading an writing (file)
Receiving and sending (socket)

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 28

Kernel entry (contd.)

next

type = kernel

struct iov_entry_kernel

size

length

m_next
m_nextpkt

m_next
m_nextpkt

m_next
m_nextpkt

m_next
m_nextpkt

mbuf chain pseudo-file

fd

USER SPACE

KERNEL SPACE

struct file*

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 29

To copy or not to copy?
Available alternatives
Introducing the io vector
Utilising the io vector
Use cases
The future

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 30

Flexibility through chaining
 Both entry types can represent any blob of data:
Packet header allocated in the user space
Contents read from a file

 Building a packet is much easier (header,
request/response, padding can all be separate)

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 31

Flexibility through chaining (contd.)
int error;

struct iovector vec;

struct iov_entry_memory hdr, res;

struct iov_entry_kernel data;

error = IovInit(&vec);

CLEANUP_ON_ERROR(error);

error = IovCreateMemoryEntry(&hdr, /* size */);

CLEANUP_ON_ERROR(error);

/* Prepare the header */

error = IovPushBack(&vec, (struct iov_entry*)&hdr);

CLEANUP_ON_ERROR(error);

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 32

Flexibility through chaining (contd.)
error = IovCreateMemoryEntry(&res, /* size */);

CLEANUP_ON_ERROR(error);

/* Prepare the response */

error = IovPushBack(&vec, (struct iov_entry*)&hdr);

CLEANUP_ON_ERROR(error);

error = IovCreateKernelEntry(&data, /* size */);

CLEANUP_ON_ERROR(error);

/* Read the data */

error = IovPushBack(&vec, (struct iov_entry*)&data);

CLEANUP_ON_ERROR(error);

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 33

Flexibility through chaining (contd.)

iovector

first
last

next
type

iov_entry_memory

next
type

next
type

iov_entry_kernel

HEADER RESPONSE DATA

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 34

Flexibility through splitting and converting
 An io vector can have its parts split off and freed

when no longer needed
 Kernel entries can be pulled up to the user

space
 Memory entries can be pushed down, too
 New syscalls are required

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 35

Flexibility through splitting and converting
int error;

struct iovector received, hdr_vec, req_vec, data;

struct smb2_header *header;

/* Vector received – now, get the header */

error = IovPullup(&received, sizeof(*header));

CLEANUP_ON_ERROR(error);

error = IovSplit(&receive, sizeof(*header), &hdr_vec);

CLEANUP_ON_ERROR(error);

header = IovMemOrigin(&hdr_vec);

/* Process the header */

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 36

Replacing a buffer with an io vector
 send/recv/read/write could take an io vector

instead of a buffer
 This enables keeping a part or all of the data

read/received in the kernel
 We can always pull up when needed

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 37

To copy or not to copy?
Available alternatives
Introducing the io vector
Utilising the io vector
Use cases
The future

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 38

Use case – large SMB2 write (1/5)

HEADER THE REST

mbufs

USER SPACE

KERNEL SPACE

 A packet is received in a minimum-sized iovector
 The header says it’s a write request

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 39

Use case – large SMB2 write (2/5)

HEADER REQUEST FILE DATA

mbufs

USER SPACE

KERNEL SPACE

 Pull up the request (fixed-size)

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 40

Use case – large SMB2 write (3/5)

HEADER REQUEST FILE DATA

mbufs

USER SPACE

KERNEL SPACE

 Split off the SMB2 packet to a separate iovector
 File data is separate now, too

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 41

Use case – large SMB2 write (4/5)

HEADER REQUEST FILE DATA

mbufs

USER SPACE

KERNEL SPACE

 Free what’s no longer needed
 Write to the file – mbufs will be moved in-kernel

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 42

Use case – large SMB2 write (5/5)
 The data written to the file has never left the

kernel
 The packet can be received to the “minimum

necessary” iovector (only the SMB2 header in
user space)

 What’s been processed and no longer needed
can be released early

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 43

Use case – SMB3 decryption (1/6)

TH THE REST

mbufs

USER SPACE

KERNEL SPACE

 A packet is received in a minimum-sized iovector
 The header is a TRANSFORM_HEADER

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 44

Use case – SMB3 decryption (2/6)

TH THE REST

mbufs

USER SPACE

KERNEL SPACE

 Decrypt the rest first
 Split off and free TRANSFORM_HEADER

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 45

Use case – SMB3 decryption (3/6)

HEADER THE REST

mbufs

USER SPACE

KERNEL SPACE

 Pull up SMB2 header (it’s decrypted now)
 The header says it’s a change notify request

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 46

Use case – SMB3 decryption (4/6)

HEADER REQUEST

USER SPACE

KERNEL SPACE

 Pull up the request

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 47

Use case – SMB3 decryption (5/6)

HEADER REQUEST

USER SPACE

KERNEL SPACE

 Execute and free the packet

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 48

Use case – SMB3 decryption (6/6)
 Decryption can be done both over the user and

kernel space buffers
 Sometimes we end up pulling up everything

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 49

To copy or not to copy?
Available alternatives
Introducing the io vector
Utilising the io vector
Use cases
The future

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 50

This is today, what’s tomorrow?
 How difficult would it be with the Linux kernel?
 RDMA and the like

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 51

Linux kernel
 There is no mbuf in Linux, some sources say

sk_buff is the equivalent
 sk_buff is much bigger and not necessarily

useful here
 iov_iter appears to fit the bill much better
 BSD-style UIO is in place
 It would still require new syscalls

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 52

RDMA
 If an mbuf chain can be a pseudo-file, then any

data coming out of an RDMA-enabled device
could be, too

 Functions implementing the file ops would have
to be different

 Another iovector entry type would be needed
 Perhaps something for a recommendation?

2018 Storage Developer Conference. © DellEMC / Isilon. All Rights Reserved. 53

Thank you!
Questions?

Credits: Brian Koropoff
(for laying the groundwork of the kernel code)

rafal.szczesniak@dell.com
@emc.com

	Use only what you really need – �Kernel space buffers in server process
	Slide Number 2
	Typical communication with the network
	Typical communication with the network
	Typical communication with the network
	Typical communication with the network
	Typical communication with the network
	Typical communication with the network
	Networks are faster and more reliable
	Slide Number 10
	Zero-copy
	Zero-copy and splice(2)
	Zero-copy and sendfile(2)
	Slide Number 14
	Engaging a kernel-level structure - mbuf
	mbuf chains
	Entering user space – io vector
	Entering user space – io vector (contd.)
	IO Vector
	Memory entry
	Memory entry (contd.)
	Memory entry (contd.)
	Kernel entry
	Kernel entry
	Kernel entry (contd.)
	Kernel entry (contd.)
	Kernel entry (contd.)
	Kernel entry (contd.)
	Slide Number 29
	Flexibility through chaining
	Flexibility through chaining (contd.)
	Flexibility through chaining (contd.)
	Flexibility through chaining (contd.)
	Flexibility through splitting and converting
	Flexibility through splitting and converting
	Replacing a buffer with an io vector
	Slide Number 37
	Use case – large SMB2 write (1/5)
	Use case – large SMB2 write (2/5)
	Use case – large SMB2 write (3/5)
	Use case – large SMB2 write (4/5)
	Use case – large SMB2 write (5/5)
	Use case – SMB3 decryption (1/6)
	Use case – SMB3 decryption (2/6)
	Use case – SMB3 decryption (3/6)
	Use case – SMB3 decryption (4/6)
	Use case – SMB3 decryption (5/6)
	Use case – SMB3 decryption (6/6)
	Slide Number 49
	This is today, what’s tomorrow?
	Linux kernel
	RDMA
	Thank you!�Questions?�

