

September 23-26, 2019 Santa Clara, CA

Accelerating RocksDB with Eideticom's NoLoad[®] NVMe-based Computational Storage Processor

Stephen Bates, CTO Eideticom (

B.C.S (Before Computational Storage)

Let There Be Light!

Computational Storage Standardization

Birds of a Feather Meeting - FMS2018

(

What are we trying to achieve?

Offload certain tasks from the host CPU

• It can be more efficienty (pj/bit) to perform certain tasks via an accelerator/offload engine.

Θ ΕΙΔΕΤΙΟΟΜ

• Our biggest competitor is not other Computational Storage companies, it is a Xeon CPU.

Reduce data movement

- Reduce DMA traffic by moving offloads closer (on) the SSDs/HDDs/NV-DIMMs etc
- pj/bit
- May allow for less DRAM on host CPU (less capacity and/or less bandwidth (channels)).
- Reduces "DMA contagen", the impact of large amounts of DMA traffic on application QoS
- Tied to frameworks like p2pdma (see SDC2018 talk)
- Achieve the above in a vendor-neutral, standards-based way that we can write open-source software too
- Leverage existing standards and ecosystems where possible.

Make Computational Storage "Consumable by Idiots". Plug in a CSx and your fans wind down... None of this is new. Shoulders of Giants.

NoLoad[®] Computational Storage Processor (CSP)

Eideticom's NoLoad[®] CSP

• Purpose built for acceleration of storage and compute intensive workloads

NVMe Computational Accelerators

• Compression, Encryption, Erasure Coding, Deduplication, Data Analytics, AI and ML

Consumable Computation Offload

- NVMe compliant, standards-based interface
- Leverages existing NVMe eco-system

Disaggregation

• Disaggregating compute and storage into independently scalable resources

🧧 ΕΙΔΕΤΙΟΟΜ

Why NVMe?

- Why develop and maintain a driver when NVMe capabilities align so well with accelerator needs and you can have world-class driver writers working on your driver?
- Real question is "Why not NVMe?"

EIDETICOM

7

NVMe for Computational Storage

Present	Present as NVMe compliant device with multiple namespaces (one per accelerator).	 Works over PCIe or Fabrics. Management via NVMe-MI – customers love this!
Discovery	Accelerators map to namespaces and are discovered using identify namespace command (vendor specific fields provide accelerator specific information)	 Security via NVMe features, TCG and OPAL. Long term what Eideticom does today morphs to a
Configure	Configure and initialize accelerator via in- situ data path configuration or offline configuration	vendor-neutral open standard
Input	Input data and configuration transferred using NVMe Writes by writing to the namespace associated with accelerator	
Output	Output data and status are retrieved using NVMe Reads by reading from the namespace associated with accelerator	

NVMe for Computational Storage

Discovery

\$ sudo nvme eid list

Node	SN	Model	Namespace	Туре	Format or <u>SubType</u>	FW Rev
/dev/nvme0n <u>1</u>	<u>nvme</u> 1	Vendor A	1	Conventional LBA	512 B + 0 B	1.0
/dev/nvme0cs2	nvme1	<u>Vendor</u> A	2	Computation	libz Compression	1.0

NVMe already have good mechanisms for discovery for both PCIe and fabric attached namespaces. We can leverage that to discover which NVMe-based Computational Storage Devices are available to a host and what the Computational Storage Services provided by those Csxes do.

DISCLAIMER: The above nvme-cli output is just an illustrative example for discussion purposes.

8

NoLoad[®] CSP – Hardware Platforms

NoLoad[®] CSP U.2

- Standard U.2 NVMe form-factor: Utilizing SFF-8639 connector
- BittWare 250-U2

NoLoad[®] CSP Alveo

- Standard GPU form-factor: x16 PCIe
- Deployed on Xilinx Alveo U200, 250 or U280

NoLoad[®] CSP E1.S EDSFF

- Standard E1.S NVMe form-factor
- BittWare 250-E1.S Hardware

EIDETICOM COPYRIGHT 2019

9

NoLoad[®] CSP - Software

A.C.S (After Computational Storage)

(

6

End Solutions – Application Acceleration: RocksDB

Bottom Line

- **6x** more transactions per sec
- 2.5x more efficient
- 4x reduced NAND costs
- Improved QoS

Details

- Eideticom's NoLoad CSP
- Xilinx Alveo U280 (HBM)
- Dell R7425 PowerEdge server
- RocksDB
- Linux Operating System
- 2 NoLoad instances with compression offload

NoLoad[®] RocksDB NVMe Solution

- RocksDB integration required modifications to RocksDB source code to leverage services provided by NoLoad[®].
- This consisted of under 100 lines of new code to tie RocksDB to NoLoad[®] via libnoload.
- Tasks like compression can now be offloaded to the CSP.
- It is also possible to use p2pdma to reduce data movement by DMAing data from the NoLoad CSP directly to the NVMe SSDs.
- Today a computational task requires two NVMe IO Commands. As we standardize this could drop to one command!

NoLoad® RocksDB Integration

End Solutions – NVMe-oF

Bottom Line

• NoLoad Accelerators located in a remote server can be accessed by any client with a RDMA or TCP/IP connection

Details

- Disaggregation of NoLoad Accelerators using NVMe-oF
- NoLoad Accelerators identify as NVMe Namespaces, which can be accessed/shared using NVMe-oF
- NoLoad Accelerators (compression, EC) shared across RDMA & TCP/IP
- Broadcom BCM58800 SmartNIC

14

Conclusions

- The large consumers of accelerators (hyperscalers) want vendoragnostic, consumable interfaces, software and management stacks. NVMe gives them all that.
- Eideticom's NoLoad CSP is the world's first UNH certified NVMe-based CSP.
- Using NoLoad we can accelerate customers applications and filesystems.

This is all getting standardized so customers can enjoy a scalable, vendor agnostic framework for acceleration and computational storage!

Eideticom HQ 3553 31st NW, Calgary, AB, Canada T2L 2K7 Eideticom (Bay Area) 168 South Park, San Francisco, CA 94107 USA

www.eideticom.com

Contact: sales@eideticom.com