

September 23-26, 2019 Santa Clara, CA

Computational Storage Architectural Discussion

Scott Shadley NGD Systems Co-Chair Computational Storage TWG

Today's Learning Opportunities (TLO). SD®

- EDGE needs CSD in M.2, EDSFF
- Architecture Our Way CSD with PCSS
- AI ML CSD the Overlap
- Hadoop & DB CSD Growth, Scale

Data, Data, Data. But Don't Take Our Word For it.

What Are You Doing with Your **Data Today?**

4

Sept 26th, 2019

What is **Driving** Our Data Analytics Issues?

Weeding through the Noise at the Edge

of enterprise-generated data will be created and processed outside the data center or cloud.

Source: Gartner - Bittman

From Edge Sensors to Centralized Cloud

Computational Storage opportunities exist throughout the distributed compute environment

Innovative Computational Storage Uses.

Highest Capacity, **Lowest** Power.

Industry leading W/TB

Industry's Only 16-Channel M.2

Industry's Largest Capacity U.2

Form Factor	Capacity (TB)	MAX Power (W)
M.2 22110	Up to 8	8
EDSFF E1.S	Up to 16	12
EDSFF E1.L	Up to 32	12
U.2 15mm	Up to 32	12
Aic Fhtql	Up to 64	15

Sept 26th, 2019

Today's Learning Opportunities (TLO). SD®

- EDGE needs CSD in Compact Form Factor
- Architecture One Way CSD with PCSS
- AI ML CSD the Overlap
- Hadoop & DB CSD Growth, Scale

Complete Solution and Disruptive Technology.

1st FULLY INTEGRATED COMPUTATIONAL STORAGE SOLUTION

10

An enterprise class device capable of processing workloads in storage at the source

- Use standard protocols (**NVMe**)
- Minimize data movement (Faster Response, Lower W/TB)
- Improve (TB/in³) with maximize (Customer TCO)

Today's Learning Opportunities (TLO). SD@

- EDGE needs CSD in Compact Form Factor
- Architecture One Way CSD with PCSS
- AI ML CSD the Overlap
- Hadoop & DB CSD Growth, Scale

No Host Interaction Required

he

Leader

ב

Computa

tiona

torage

Solutions

Weightless Neural Networks Used for Object Tracking.

ESANN 2015 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges (Belgium), 22-24 April 2015, i6doc.com publ., ISBN 978-287587014-8. Available from http://www.i6doc.com/en/.

A WiSARD-based multi-term memory framework for online tracking of objects

Daniel N. do Nascimento¹, Rafael L. de Carvalho^{1,3}, Félix Mora-Camino⁴, Priscila V. M. Lima², Felipe M. G. França¹ *

- 1 COPPE, 2 NCE, Universidade Federal do Rio de Janeiro, BRAZIL 3 - Universidade Federal do Tocantins, UFT, BRAZIL
- 4 Ecole Nationale de l'Aviation Civile Laboratoire d'Automatique, FRANCE

Abstract. In this paper it is proposed a generic object tracker with realtime performance. The proposed tracker is inspired on the hierarchical short-term and medium-term memories for which patterns are stored as discriminators of a WiSARD weightless neural network. This approach is evaluated through benchmark video sequences published by Babenko et al. Experiments show that the WiSARD-based approach outperforms most of the previous results in the literature, with respect to the same dataset.

Moving **Beyond** Traditional Models.

 Parallel & distributed Training in Computational Storage

• Federated/Transfer Learning

 Reduce data transfers by sending sparse model updates

ML Training with Traditional Approach.

ML Training with Computational Storage.

Load Data

systems

ML Training with Traditional Approach.

ML Training with Computational Storage.

Load Data

Train

tems

- No data movement
- No host CPU needed
- Distributed training

ML Training with Traditional Approach.

- Host CPU still needed
- No Parallelism

....

ML Training with Traditional Storage.

ML Training with Computational Storage.

Train

Federated/Transfer Learning.

MNIST DATASET

60,000 samples

From the training set

61 updates

Model updates transferred

94% accuracy

With only 4 partial model updates

The Leader in Computational Storage Solutions

Today's Learning Opportunities (TLO). SD@

- EDGE needs CSD in Compact Form Factor
- Architecture One Way CSD with PCSS
- AI ML CSD the Overlap
- Hadoop & DB CSD Growth, Scale

Amplifying TCO for Hadoop

4-core host 16-core host 16-core host 18 0 2 4 6 9 12 Number of Computational Storage Devices

Datanode Config: Single E5-2620v4, 32GB DRAM, 12*8 TB SAS HDD **18U Total Density in 18U = 864TB**

@ Scale Saves Power! Saves Space! Saves Time!

Datanode Config:

Single E5-2620v4, 32GB DRAM, 36*8TB NVMe

3U Total Density in 3U = 864TB

432 Additional Drive Cores

	C.

Terasort energy consumption

24

Using MongoDB within Computational Storage.

Scalable Computational Storage.

A New Storage Paradigm is Here

• The "New Cloud" needs the Distributed Edge

• There is no longer just a 'central' storage location

Edge data growth challenges HW platforms

 $\circ~$ Innovative form factors and high capacity for the Edge

• In-Situ Processing brings ML closer to data

o Exploit data locality and enable distributed processing

September 23-26, 2019 Santa Clara, CA

Computational Storage

Scott.Shadley@NGDSystems.com www.NGDSystems.com

TW: @SMShadley @NGDSystems

