

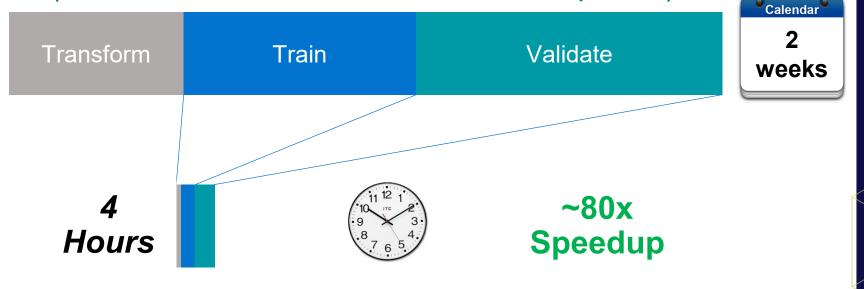
September 23-26, 2019 Santa Clara, CA

IO for GPU-Accelerated Machine Learning

Andy Watson, CTO watson@weka.io / @the_andywatson WekalO, Inc.

Data Access Challenges Impeding AI/ML Research 1/2

- Increasingly Huge Quantities of Data
 - Available from more sources
 - Hundreds of Terabytes growing to Petabytes (or Exabytes)
- Object Storage can scale capacity, but ...
 - Performance is generally only good for large-object throughput
- Also, historically most applications have been written for *file* access
 - Arguably, even new apps continue to be file-oriented
 - Many "cloud native" apps are architected for object storage

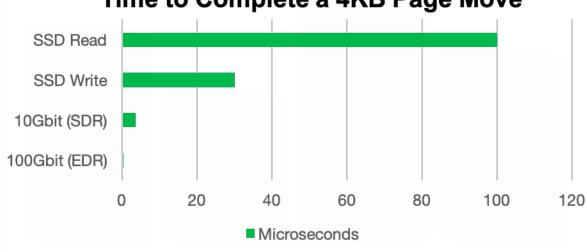

Data Access Challenges Impeding AI/ML Research 2/2

SD[®]

- Some Filesystems can scale capacity, but ...
 - Diminishing performance with scaling is typical
 - Instability with huge numbers of *files per directory* reflects metadata issues independent of capacity
 - Single-mount-point performance is often insufficient
- GPU-Accelerated AI/ML Training & Validation
 - Some GPU tasks are compute-bound, but ...
 - Training & Validation are usually IO-constrained

Dramatic Reduction in Training Epoch Cycle Times

at an actual AI/ML customer site (autonomous vehicle software development)


SD (®

What Happened There? 1/2

- Previously they'd been copying data to local flash
 - Seemed "fast" but …
 - Burdened by wall-clock time for copying data to local SSD
 - Extra steps in the workflow are opportunities for errors
 - Better to have shared data access if it's fast enough
- But by using the network to get to WekalO …
 - Instead of reading from only a small # of local flash devices, dozens or hundreds are accessed in parallel
 - And WekalO's Matrix[™] filesystem is flash-native, with no historical baggage based on HDD — intrinsically faster

What Happened There? 2/2

- And why not traverse the network?
 - Latency contribution of a high-speed network is trivial

Time to Complete a 4KB Page Move

Aggregate Performance Isn't Enough

SD®

- These are not your grandfather's compute servers
 - Faster CPU's? Yes.
 - Faster NIC's, with offload processors? Yes.
- Adding GPU's to accelerating the AI/ML workload ...
 - Significantly elevates the demand at each mount point

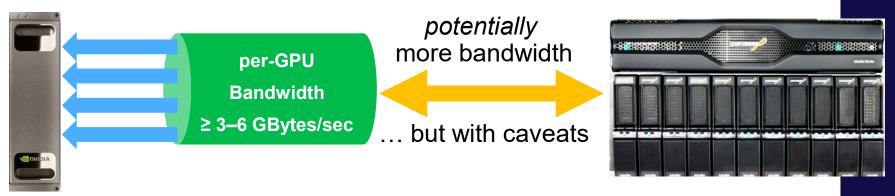
GPU-Acceleration Is A Game-Changer

SD @

- Each GPU is a sophisticated Array Processor with extremely demanding IO requirements
 - Each individual NVIDIA Tesla V100 GPU's ~4 GBytes/s
 - An x86 compute server can have multiple GPU's installed, maxing out at 8
 - NVIDIA's DGX-2 platform has <u>16</u> Tesla V100's with 8 100-gbit/s network links
- So: What should data storage infrastructure look like for GPU-accelerated compute platforms?

GPU-Acceleration Is A Game-Changer

adding GPUs concentrates compute infrastructure's associated IO density (by $\sim 10x$ in this example) **GPU-Accelerated** Server 10 **CPU-only** Servers


Shared File Storage via NFS

NFSv2, v3, v4 — only ~1–1.5 GB/s per client

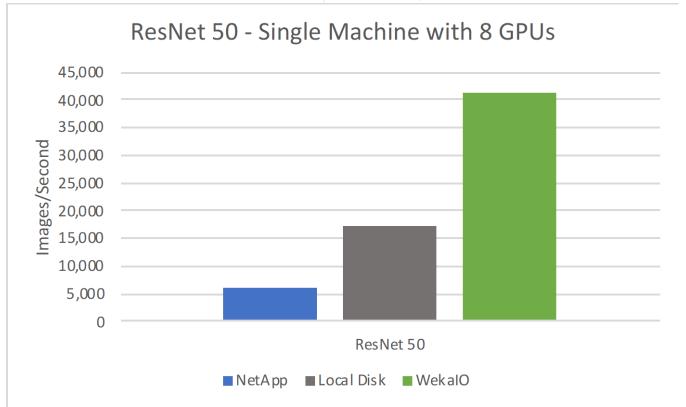
- NFSv4's pNFS & Session Trunking *potentially* better, but not yet performing in production
- Multiple GPU's per compute server exacerbate this per-mount-point limitation

Shared File Storage via Distributed Parallel Filesystems

- Lustre, IBM Spectrum Scale (GPFS), Panasas
 - Best results typically for large-file sequential access
 - > 100,000 files per dir stressful for metadata servers
 - Complex to admin; designed for HDD

Shared File Storage via WekalO Matrix[™] Filesystem

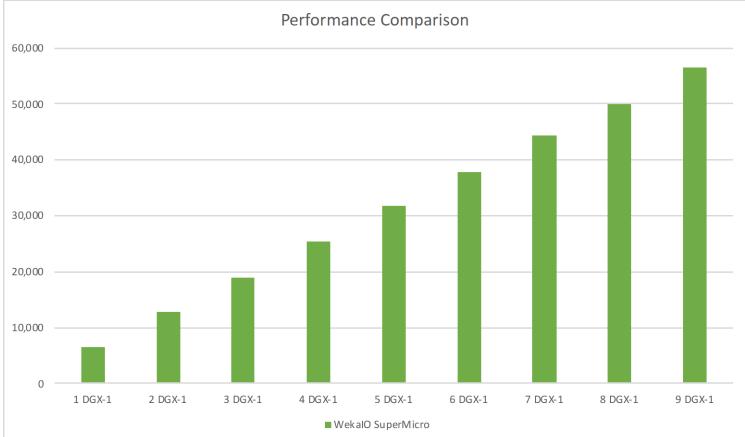
per-GPU data access up to ~11 GBytes/sec (100-gbit/s networks) or ~22 Gbytes/sec (200-gbit/s IB)



- WekalO's Matrix[™] is a shared parallel fs
 - Designed exclusively for flash (not for HDD)
 - Optimized across WekalO's own NVMe Fabric
 - InfiniBand or 100-GbE preferred (10-GbE minimum)

SD (®

ResNet 50 Inference Benchmark


Santa Clara, CA

2019 Storage Developer Conference. © WekalO, Inc. All Rights Reserved.

SD[®]

Linear Scaling — Resnet50 Training

2019 Storage Developer Conference. © WekalO, Inc. All Rights Reserved.

SD[®]

THANKS

Please take a moment to rate this session.

Your feedback matters to us.