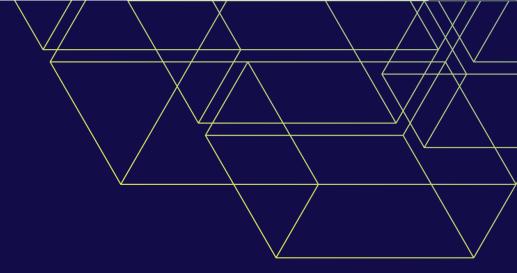


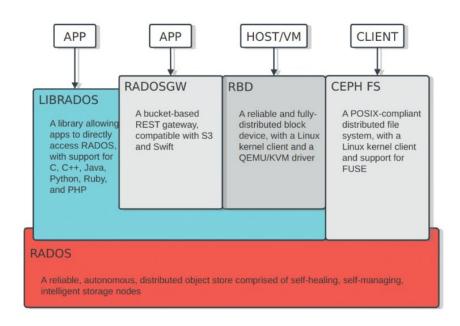
September 23-26, 2019 Santa Clara, CA


A Crash-consistent Client-side Cache for Ceph

Lisa Li, Tushar Gohad Intel

Agenda

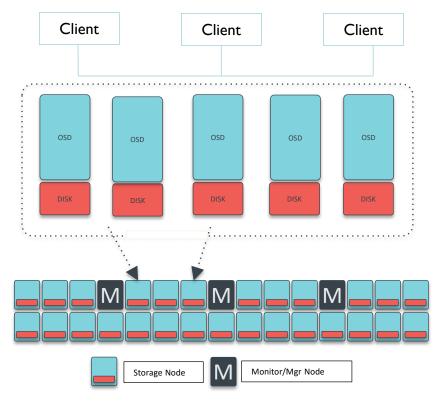
- Motivation and Background
- Design and Implementation
- Performance Evaluation
- Upstream Status and Future Work

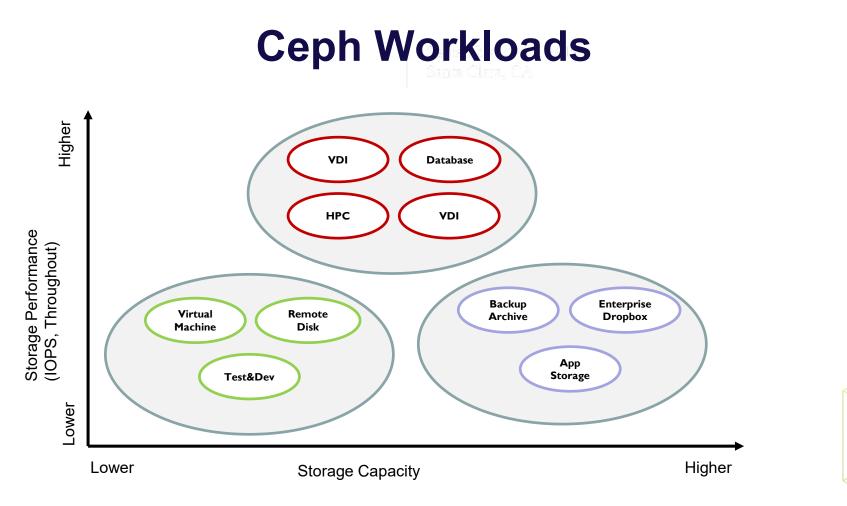

SD @

Background and Motivation

Ceph Introduction

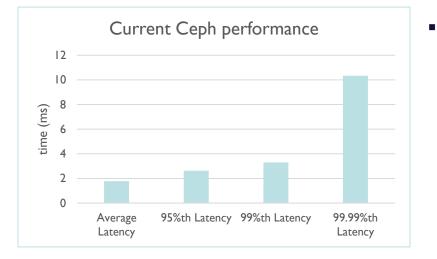
- Ceph is a unified, distributed storage system designed for excellent performance, reliability and scalability
- Object Store (RADOSGW)
 - A bucket based REST gateway
 - Compatible with S3 and swift
- Block device service (RBD)
 - Block device
 - Kernel client and FUSE
- File System (CEPH FS)
 - POSIX-compliant distributed file system
 - Kernel client and FUSE




SD©

SD®

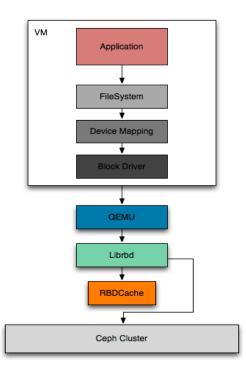
- Ceph clients
 - User space/Kernel driver
- Peer to Peer via Network
 - Direct access to storage
 - No centralized metadata node
- Storage Nodes
 - Data distributed and replicated across nodes



SD[©]

Latency-sensitive IO loads

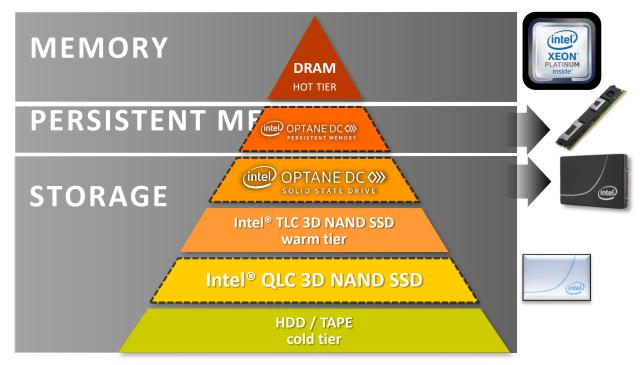
Test	Average	95%th	99%th	99.99%th
	Latency	Latency	Latency	Latency
4k randwrite	1.775	2.625	3.294	10.342



- IOPS requirement may be not high, Tail latency is key
- Database etc
- High performance target for Ceph: caching one way to improve tail latency while Crimson OSD project takes shape

2019 Storage Developer Conference. © Intel. All Rights Reserved.

Block Caching in Ceph


- Ceph supports RAM-based block cache today
- No persistent block cache
- Small capacity
- Ongoing effort to support persistent block cache in read and writeback mode

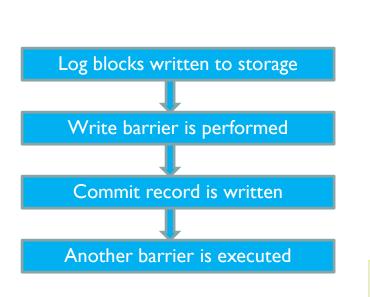
SDX (9

Latest Generation Hardware for Ceph

SD©

Intel[®] CPUs with up to 56 cores Intel[®] Optane[™] DC PM DDR4 DIMM form factor Cost-effective memory expansion Lowest latency Uses: flexible memory for AI, CDN, DBs, fast restart

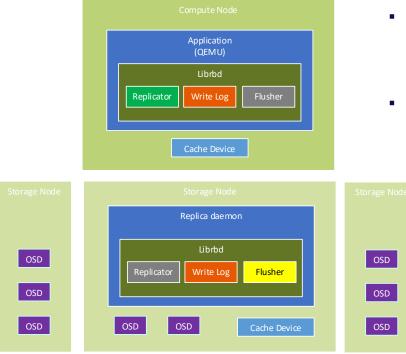
Intel[®] Optane[™] DC SSD (3D XPoint) High write IOPs High endurance Low & consistent latency Uses: Metadata, Tier, Cache


Intel[®] QLC SSD (3D-NAND)

Cost & capacity optimized Scale up to 32TB per SSD High density, small footprint servers Read-oriented workloads

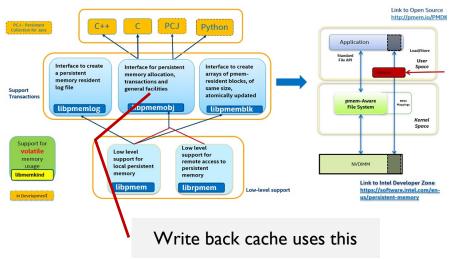
Design and Implementation

Ordered, Crash-consistent WB


- Crash Consistent Caching
 - Journaled
 - Snapshot
- Ordered Writeback
 - Write-barriers to enforce write ordering
- RBD image consistent despite compute node crash

SDI()

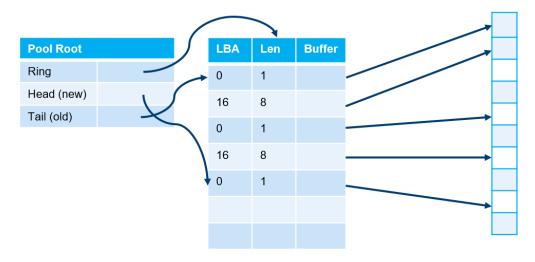
Architecture



- Local write log on cache device is replicated
 - If cache device fails, so does client node
 - Avoids remote log read & local resilver
- Replica write log is in a Ceph storage node
 - Fully monitored, unlike client
 - Can be replaced on the fly, and resilvered from the local log
 - We'll flush from here
 - Flushing must complete if client dies
 - Closer to OSDs
 - Multiple replicas possible

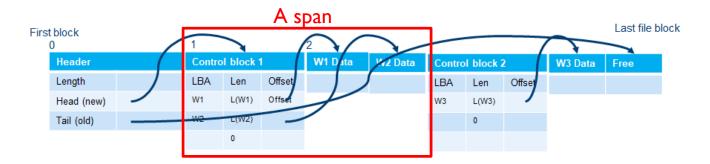
2019 Storage Developer Conference. © Intel. All Rights Reserved.

Persistent Memory* as Cache Device


- PMDK is a growing collection of libraries which build on DAX feature and allows application direct load/store access to persistent memory
- libpmemobj: provides a transactional object store for cache metadata

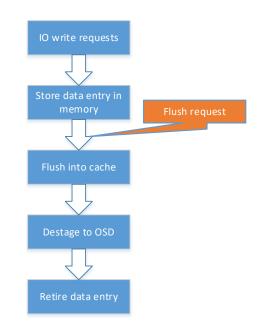
* Our work uses the Intel® Optane[™] DC Persistent Memory Module

2019 Storage Developer Conference. © Intel. All Rights Reserved.


Persistent Memory as Cache Device

- Operated as memory
- Superblock + journal array + data buffer
- Both superblock and journal array are fixed during initialization, and data buffer managed by libpmemobj
- Libpmemobj provides transactional metadata store

NVMe SSD as Cache Device


- Operations are block-based
- Superblock + ring buffer of spans
- Each span includes a control block and a number of data blocks
- Flush, Reclaim on a span unit

2019 Storage Developer Conference. © Intel. All Rights Reserved.

Generic Workflow

- The overall process:
 - Receive requests from librbd
 - Save data in memory
 - Flush data to cache when a flush request is triggered
 - De-stage data to storage cluster in background
 - Retire data in cache

SD©

Persistence control

Persist on write

• Write ACKed after it has been persisted to cache device(s)

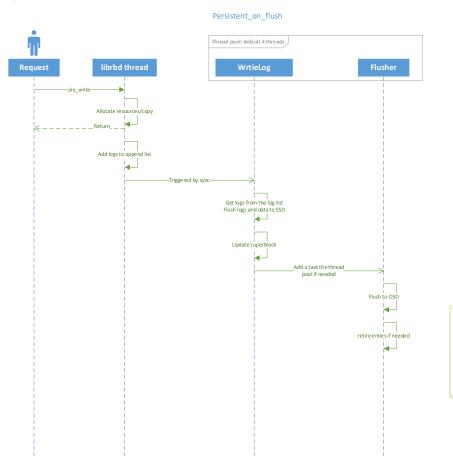
Persist on flush

- Write ACKed after data is in RAM buffer
- When Flush request is issued (by client or cache), data is persistent to cache device(s)
 - All prior completed writes are guaranteed persistent before ACKing
 - Linux write barrier (client), Internal flush requests (cache)
 - Every flush is mapped to a sync point in the journal array
- We'll defer reads of LBAs with in flight writes until those writes completed
- Policy is selectable
 - auto-detect possible, set writethrough_until_flush as true

SD @

Persist-on-Write

Persistent_on_write


- Thread pool: default 4 threads Request librbd thread WriteLog Flusher Allocate resources Add log to append list Insert new sync point Triggered by sync-Get logs from the list Flush logs and data to SSE Update superblock -Add a task if needed-Flush to OSE Retire entries if needed
- When a write request is handled, it creates a log entry in RAM and its user buffers are copied in RAM.
- The log entry is added to a log append queue.
- The logs and corresponding data are sent to cache device.
- Update tail in the superblock.
- Once write completes on cache device, it returns to users that a write request is completed.

2019 Storage Developer Conference. © Intel. All Rights Reserved.

Persist-on-Flush

SD©

- When a write request is handled, it creates a log entry in RAM and its data buffers are copied in RAM.
- The log entry is added to a log append queue.
- It returns to the user that the request is completed.
- When users send out a flush request or the dirty logs/data exceeds limitation, the logs and corresponding data in the append queue will be written to cache device.
- Update tail in the superblock.

2019 Storage Developer Conference. © Intel. All Rights Reserved.

Flush log entries on sync point boundary

- Flusher can flush in parrallel
- Once flushed into OSD, the log entry is marked as completed
- WIP: Write-coalescing (merge write entries between sync points)

Reclaim on a span unit

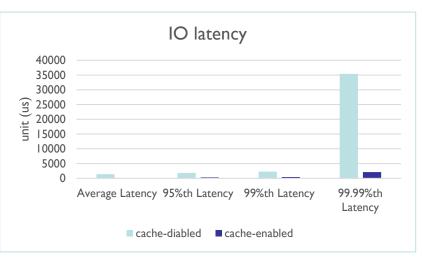
- All the log entries in a span are completed, the span can be reclaimed.
- Update superblock and the span is reclaimed.

Performance

FIO, Single RBD Image 94% better tail wr latency

Client

- Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz
- Intel® Optane™ SSD DC P4800X 375G


Storage Node

- Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz
- One Intel[®] SSD DC P3700 Series 400G

IO loads

- 1x 10G rbd image
- Cache_size = 1G
- FIO + librbd
- 4K random writes
- RBD IOPS Limit = 4000
- Send sync request every 32 IOs.
- ramptime = 10 min, runtime=10 min

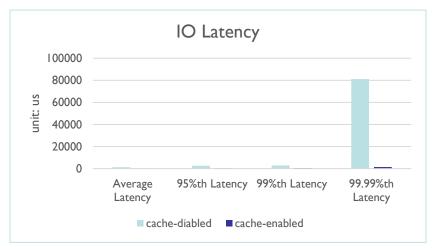
	Average Latency	95%th Latency	99%th Latency	99.99%th Latency
Cache-disabled	1382	1811	2245	35390
Cache-enabled	89	326	424	2089

FIO, Multiple RBD Images

98% better tail wr latency

Client

- Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz
- Intel® Optane™ SSD DC P4800X 375G


Storage Node

- Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz
- One Intel® SSD DC P3700 Series 400G

IO loads

- 5x 10G rbd image
- Cache_size = 1G
- FIO + librbd
- 4K random writes
- RBD IOPS Limit = 4000
- Send sync request every 32 IOs.
- ramptime = 10 min, runtime=10 min

cache	Average Latency	95%th Latency	99%th Latency	99.99%th Latency
cache-diabled	1320	2540	2868	81265
cache-enabled	83	285	429	1450

Future Work

Upstream Status + Future Work

Upstream Status

- Under review <u>https://github.com/ceph/ceph/pull/29078</u>
- SSD part is under development. Merget target 2020
- Replication
 - PM Replication over RDMA support in PMDK (WIP)
- CAS/OCF (Cache Acceleration Software)
 - Open-sourced: <u>https://open-cas.github.io</u>
 - OCF plugin for librbd in POC stage

Thank you!