
2019 Storage Developer Conference. © Intel. All Rights Reserved. 1

A Crash-consistent Client-side
Cache for Ceph

Lisa Li, Tushar Gohad
Intel

2019 Storage Developer Conference. © Intel. All Rights Reserved. 2

Agenda

 Motivation and Background
 Design and Implementation
 Performance Evaluation
 Upstream Status and Future Work

2019 Storage Developer Conference. © Intel. All Rights Reserved. 3

Background and Motivation

2019 Storage Developer Conference. © Intel. All Rights Reserved. 4

Ceph Introduction

• Ceph is a unified, distributed storage
system designed for excellent
performance, reliability and scalability

• Object Store (RADOSGW)
• A bucket based REST gateway
• Compatible with S3 and swift

• Block device service (RBD)
• Block device
• Kernel client and FUSE

• File System (CEPH FS)
• POSIX-compliant distributed file

system
• Kernel client and FUSE

2019 Storage Developer Conference. © Intel. All Rights Reserved. 5

Ceph Cluster

DISK DISK DISK DISK DISK

OSD OSD OSD

MMM

OSD OSD

Storage Node Monitor/Mgr NodeM

Client Client Client

• Ceph clients
• User space/Kernel driver

• Peer to Peer via Network
• Direct access to storage
• No centralized metadata node

• Storage Nodes
• Data distributed and

replicated across nodes

2019 Storage Developer Conference. © Intel. All Rights Reserved. 6

Ceph Workloads

DatabaseVDI

HPC VDI

Remote
Disk

Virtual
Machine

Test&Dev

Enterprise
Dropbox

Backup
Archive

App
StorageSt

or
ag

e
Pe

rfo
rm

an
ce

(IO
PS

, T
hr

ou
gh

ou
t)

Storage Capacity

Lo
w

er
H

ig
he

r

HigherLower

2019 Storage Developer Conference. © Intel. All Rights Reserved. 7

Latency-sensitive IO loads

 IOPS requirement may be not
high, Tail latency is key

 Database etc
 High performance target for

Ceph: caching one way to
improve tail latency while
Crimson OSD project takes
shape

0

2

4

6

8

10

12

Average
Latency

95%th Latency 99%th Latency 99.99%th
Latency

tim
e

(m
s)

Current Ceph performance

Test Average
Latency

95%th
Latency

99%th
Latency

99.99%th
Latency

4k randwrite 1.775 2.625 3.294 10.342

2019 Storage Developer Conference. © Intel. All Rights Reserved. 8

Block Caching in Ceph

 Ceph supports RAM-based block
cache today

 No persistent block cache
 Small capacity
 Ongoing effort to support persistent

block cache in read and writeback
mode

2019 Storage Developer Conference. © Intel. All Rights Reserved. 9

Latest Generation Hardware for Ceph

PERSISTENT MEMORY

STORAGE

MEMORY

Intel® TLC 3D NAND SSD
warm tier

HDD / TAPE
cold tier

Intel® QLC 3D NAND SSD

DRAM
HOT TIER

Intel® CPUs with up to 56 cores
Intel® Optane™ DC PM
DDR4 DIMM form factor
Cost-effective memory expansion
Lowest latency
Uses: flexible memory for AI, CDN, DBs,
fast restart

Intel® QLC SSD (3D-NAND)
Cost & capacity optimized
Scale up to 32TB per SSD
High density, small footprint servers
Read-oriented workloads

Intel® Optane™ DC SSD (3D XPoint)
High write IOPs
High endurance
Low & consistent latency
Uses: Metadata, Tier, Cache

2019 Storage Developer Conference. © Intel. All Rights Reserved. 10

Design and Implementation

2019 Storage Developer Conference. © Intel. All Rights Reserved. 11

Ordered, Crash-consistent WB

 Crash Consistent Caching
 Journaled
 Snapshot

 Ordered Writeback
 Write-barriers to enforce

write ordering
 RBD image consistent

despite compute node
crash

Log blocks written to storage

Write barrier is performed

Commit record is written

Another barrier is executed

2019 Storage Developer Conference. © Intel. All Rights Reserved. 12

Architecture
 Local write log on cache device is replicated

 If cache device fails, so does client node
 Avoids remote log read & local resilver

 Replica write log is in a Ceph storage node
 Fully monitored, unlike client
 Can be replaced on the fly, and resilvered

from the local log
 We’ll flush from here

 Flushing must complete if client dies
 Closer to OSDs

 Multiple replicas possible

Compute Node

Application
(QEMU)

Librbd

Replicator Flusher

Cache Device

Storage Node

Cache Device

Replica daemon

Librbd

Write Log

Replicator FlusherWrite Log

Storage Node

OSD

OSD

OSD

Storage Node

OSD

OSD

OSD

OSD OSD

2019 Storage Developer Conference. © Intel. All Rights Reserved. 13

Persistent Memory* as Cache Device

 PMDK is a growing collection
of libraries which build on DAX
feature and allows application
direct load/store access to
persistent memory

 libpmemobj: provides a
transactional object store for
cache metadata

Write back cache uses this

* Our work uses the Intel® OptaneTM DC Persistent Memory Module

2019 Storage Developer Conference. © Intel. All Rights Reserved. 14

Persistent Memory as Cache Device
 Operated as memory
 Superblock + journal array + data buffer
 Both superblock and journal array are fixed during initialization,

and data buffer managed by libpmemobj
 Libpmemobj provides transactional metadata store

2019 Storage Developer Conference. © Intel. All Rights Reserved. 15

NVMe SSD as Cache Device
 Operations are block-based
 Superblock + ring buffer of spans
 Each span includes a control block and a number of data blocks
 Flush, Reclaim on a span unit

A span

2019 Storage Developer Conference. © Intel. All Rights Reserved. 16

Generic Workflow

 The overall process:
 Receive requests from librbd
 Save data in memory
 Flush data to cache when a

flush request is triggered
 De-stage data to storage

cluster in background
 Retire data in cache

IO write requests

Store data entry in
memory

Flush into cache

Destage to OSD

Retire data entry

Flush request

2019 Storage Developer Conference. © Intel. All Rights Reserved. 17 1

Persistence control
 Persist on write

 Write ACKed after it has been persisted to cache device(s)
 Persist on flush

 Write ACKed after data is in RAM buffer
 When Flush request is issued (by client or cache), data is

persistent to cache device(s)
 All prior completed writes are guaranteed persistent before ACKing
 Linux write barrier (client), Internal flush requests (cache)
 Every flush is mapped to a sync point in the journal array

 We’ll defer reads of LBAs with in flight writes until those writes
completed

 Policy is selectable
 auto-detect possible, set writethrough_until_flush as true

2019 Storage Developer Conference. © Intel. All Rights Reserved. 18 1

Persist-on-Write

librbd thread

Allocate resources

Request

aio_write

WriteLog

Add log to append list

Get logs from the list
Flush logs and data to SSD

Update superblock

Flusher

Flush to OSD

Retire entries if needed

Triggered by sync

Add a task if needed

Thread pool: default 4 threads

Insert new sync point

Return

Persistent_on_write

 When a write request is handled, it creates a
log entry in RAM and its user buffers are
copied in RAM.

 The log entry is added to a log append
queue.

 The logs and corresponding data are sent to
cache device.

 Update tail in the superblock.
 Once write completes on cache device, it

returns to users that a write request is
completed.

2019 Storage Developer Conference. © Intel. All Rights Reserved. 19 1

Persist-on-Flush

librbd thread

Allocate resources/copy

Return

Request

aio_write

WrtieLog

Add logs to append list

Get logs from the log list
Flush logs and data to SSD

Update superblock

Flusher

Flush to OSD

retire enties if needed

Triggered by sync

Add a task the thread
pool if needed

Thread pool: default 4 threads

Persistent_on_flush

 When a write request is handled, it creates a log
entry in RAM and its data buffers are copied in
RAM.

 The log entry is added to a log append queue.

 It returns to the user that the request is
completed.

 When users send out a flush request or the dirty
logs/data exceeds limitation, the logs and
corresponding data in the append queue will be
written to cache device.

 Update tail in the superblock.

2019 Storage Developer Conference. © Intel. All Rights Reserved. 20 2

Flush and Reclaim

 Flush log entries on sync point boundary
 Flusher can flush in parrallel
 Once flushed into OSD, the log entry is marked as completed
 WIP: Write-coalescing (merge write entries between sync points)

 Reclaim on a span unit
 All the log entries in a span are completed, the span can be

reclaimed.
 Update superblock and the span is reclaimed.

2019 Storage Developer Conference. © Intel. All Rights Reserved. 21

Performance

2019 Storage Developer Conference. © Intel. All Rights Reserved. 22

FIO, Single RBD Image
94% better tail wr latency

Average
Latency

95%th
Latency

99%th
Latency

99.99%th
Latency

Cache-disabled 1382 1811 2245 35390

Cache-enabled 89 326 424 2089

 Client
 Intel(R) Xeon(R) CPU E5-2699 v4 @

2.20GHz
 Intel® Optane™ SSD DC P4800X 375G

 Storage Node
 Intel(R) Xeon(R) CPU E5-2699 v4 @

2.20GHz
 One Intel® SSD DC P3700 Series 400G

 IO loads
 1x 10G rbd image
 Cache_size = 1G
 FIO + librbd
 4K random writes
 RBD IOPS Limit = 4000
 Send sync request every 32 IOs.
 ramptime = 10 min, runtime=10 min

0
5000

10000
15000
20000
25000
30000
35000
40000

Average Latency 95%th Latency 99%th Latency 99.99%th
Latency

un
it

(u
s)

IO latency

cache-diabled cache-enabled

2019 Storage Developer Conference. © Intel. All Rights Reserved. 23

 Client
 Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz
 Intel® Optane™ SSD DC P4800X 375G

 Storage Node
 Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz
 One Intel® SSD DC P3700 Series 400G

 IO loads
 5x 10G rbd image
 Cache_size = 1G
 FIO + librbd
 4K random writes
 RBD IOPS Limit = 4000
 Send sync request every 32 IOs.
 ramptime = 10 min, runtime=10 min

0

20000

40000

60000

80000

100000

Average
Latency

95%th Latency 99%th Latency 99.99%th
Latency

un
it:

 u
s

IO Latency

cache-diabled cache-enabled

cache Average
Latency

95%th
Latency

99%th
Latency

99.99%th
Latency

cache-diabled 1320 2540 2868 81265

cache-enabled 83 285 429 1450

FIO, Multiple RBD Images
98% better tail wr latency

2019 Storage Developer Conference. © Intel. All Rights Reserved. 24

Future Work

2019 Storage Developer Conference. © Intel. All Rights Reserved. 25 2

Upstream Status + Future Work

 Upstream Status
 Under review https://github.com/ceph/ceph/pull/29078
 SSD part is under development. Merget target 2020

 Replication
 PM Replication over RDMA support in PMDK (WIP)

 CAS/OCF (Cache Acceleration Software)
 Open-sourced: https://open-cas.github.io
 OCF plugin for librbd in POC stage

https://github.com/ceph/ceph/pull/29078
https://open-cas.github.io/

2019 Storage Developer Conference. © Intel. All Rights Reserved. 26

Thank you!

	A Crash-consistent Client-side Cache for Ceph
	Agenda
	Background and Motivation
	Ceph Introduction
	Ceph Cluster
	Ceph Workloads
	Latency-sensitive IO loads
	Block Caching in Ceph
	Latest Generation Hardware for Ceph
	Design and Implementation
	Ordered, Crash-consistent WB
	Architecture
	Persistent Memory* as Cache Device
	Persistent Memory as Cache Device
	NVMe SSD as Cache Device
	Generic Workflow
	Persistence control
	Persist-on-Write
	Persist-on-Flush
	Flush and Reclaim
	Performance
	FIO, Single RBD Image�94% better tail wr latency
	Slide Number 23
	Future Work
	Upstream Status + Future Work
	Thank you!

