

NVNe™ State of the Union

Peter Onufryk

NVM Express, Inc. 120+ Companies Defining NVMe Together

Board of **Directors**

13 elected companies, stewards of the technology & driving processes Chair: Amber Huffman

NVMe Base and NVMe Over Fabrics Chair: Peter Onufryk

Management Intf. Workgroup

NVMe Management Co-Chairs: Austin Bolen and John Geldman

SAMSUNG

Toshiba Memory

NVMexpress.org, webcasts, tradeshows, social media, and press Co-Chairs: Jonmichael Hands and Cameron Brett

Interop (ICC) Workgroup

Interop & Conformance Testing in collaboration with UNH-IOL Chair: Ryan Holmqvist

Ten Years of NVMe

Strong Growth Across Segments

With Millions of Units Shipping

K Units	2016	2017	2018	2019*	2020*	2021*
Enterprise	364	749	1,048	2,774	5,740	11,192
Cloud	2,051	3,861	10,231	17,338	25,891	31,050
Client	33,128	50,385	82,613	111,888	187,689	243,889

NVMe is The New Language of Storage

NVMe SSDs	23 Companies Shipping 96 Models		
NVMe Severs	13 Companies Shipping 93 Models		
NVMe AFAs	11 Companies Shipping 21 Models		
NVMe Appliances	8 Companies Shipping 21 Models		
NVMe-oF HBAs/NICs/RNICs	5 Companies Shipping 53 Models		
NVMe-oF Accelerated Adapters	6 Companies Shipping		

^{*} Data provided by G2M Research

2019 NVMe Deliverables

NVMe Base Specification NVMe 1.4 6/10/2019 NVMe 1.3 5/1/2017 NVMe 1.2 11/3/2014 NVMe 1.1 10/11/2012 NVMe 1.0 5/14/2008

NVMe Over Fabrics Specification				
NVMe-oF 1.1	45-day Review			
NVMe-oF 1.0	6/5/2016			

NVMe Specification Roadmap

Three New Specifications for 2019

NVMe 1.4

NVM Sets and IO Determinism
 enable better performance, isolation,
 and QoS for hyperscale data centers.
 Persistent event log provides robust drive history for issue triage and debug. Multipathing provides optimal path for a namespace in multicontroller topologies

NVMe-oF 1.1

Enhanced Discovery for hosts to discover new NVMe devices.

TCP Transport Binding NVMe/TCP enables efficient end-to-end NVMe operations with standard IP network with excellent performance and latency characteristics

NVMe-MI 1.1

Enclosure Management enhances
NVMe-MI for storage arrays for slot
control, LED, and fans. In-band
Mechanism opens up the NVMe-MI
command set to standard NVMe driver
(VPD, FRU). Storage Device
Extension extends NVMe-MI to carrier
cards and multiple controller devices

I/O Determinism – NVM Sets

- NVM Sets are QoS Isolated
 - Write to namespace A1 does not impact QoS associated with namespace B2
- NVM Subsystem may support one or more NVM Sets
- One or more Namespaces may be allocated to an NVM Set

I/O Determinism – Predictable Latency Mode

NVMe in High End Storage Systems

Asymmetric Namespace Access (ANA)

NVMe-oF TCP Transport Binding

NVMe/TCP - Open Source Performance

Upstream Linux kernel NVMe™/TCP vs. NVMe/RDMA (added latency over direct attached PCIe® SSD)

NVMe JBOFs

Facebook Lightning PCIe NVMe JBOF

NVMe Enclosure Management

- Native PCIe Enclosure Management (NPEM)
 - Submitted to the PCI-SIG Protocol Workgroup (PWG) on behalf of the NVMe[™] Management Interface (NVMe-MI[™]) Workgroup
 - Approved by PCI-SIG on August 10th, 2017
 - Transport specific basic enclosure management
- SCSI Enclosure Services (SES) Based Enclosure Management
 - Technical proposal developed in the NVMe-MI workgroup
 - While the NVMe and SCSI architectures differ, the elements of an enclosure and capabilities to manage them are the same
 - Example enclosure elements: power supplies, fans, display or indicators, locks, temperature sensors, current sensors, voltage sensors, and ports
 - Comprehensive enclosure management for NVMe that leverages (SES), a standard developed by T10 for management of enclosures using the SCSI architecture

NVMe Storage Devices in NVMe-MI 1.0a

NVMe Storage Device – One NVM Subsystem with one or more ports, optional FRU Information Device, and an optional SMBus/I2C interface

NVMe Storage Devices in NVMe-MI 1.1

M.2 Carrier Board from Amfeltec

ANA Carrier Board from Facebook

The Evolution of NVMe

Phase 3 Phase 1 Phase 2 Scale NVMe over arbitrary Unify PCIe SSDs around a Standardize NVM enabled fabrics storage innovations common interface Expand NVMe into new use Get an in-box driver in all cases (e.g., Automotive and major operating systems Storage Arrays)

NVMe Continues to Drive Simplicity in A World of Complexity

NVM Command Set Key Value Command Set Zoned Command Set Other Command Set

NVMe Base Specification (PCIe + Fabrics)

NVMe Architecture

Admin Command Set

NVMe Features

IO Determinism • Multipath • Sets & Endurance Groups • Namespace Types • Domains & Partitions

Security • Sanitize • Persistent Event Log • Telemetry • Power Management • and many others

NVMe/PCIe

NVMe/RDMA

NVMe/FC

NVMe/TCP

NVMe/New Technology

21 EXPRESS®

Evolution of the NVM Express Organization

Marketing Workgroup

Co-Chairs: Cameron Brett & Jonmichael Hands (Toshiba & Intel)

Technical Workgroup

Chair: Peter Onufryk (Intel)

Topic Task Groups

Management Interface

Co-Chairs: Austin Bolen & John Geldman (Dell & Toshiba)

Interop (ICC)

Chair: Ryan Holmqvist (Microchip)

Asymmetric Namespace Access (ANA)

Chair: Fred Knight (NetApp)

Single Technical Proposal Task Groups

Key Value

Chair: Bill Martin (Samsung)

Endurance Group Management

Chair: Mark Carlson (Toshiba)

Spec Refactoring

Chair: Nick Adams (Intel)

Zoned Namespaces

Chair: Matias Bjorling (WD)

Increasing the Rate of Innovation Together with

Greater Quality

 Formalized task groups with publicly published calendars and minutes

- Technical proposal phases with clear entries and exits
- Document repository with revision history
- Integrated draft specification always up to date
- Weekly electronic ballots

Summary

NVMe has unified client, cloud, and enterprise storage around a common command set and interface

The growth in NVMe adoption continues to accelerate

The NVMe organization has put in place processes and initiatives to support the increased rate of innovation enabled by NVM and new use cases

NVMe remains true to its core principles of simplicity and efficiency as it enters is second decade

