

Security, Integrity and Choices for NVMe over Fabrics

Nishant Lodha Marvell

Agenda

- NVMe-oF®, the choices and the confusion
- Use Cases by Fabric
- Securing NVMe-oF
- Key Takeaways

Scaling our NVMe Requires a (Real) Network

SD®

- Many options, plenty of confusion
- Fibre Channel is the transport for the vast majority of today's all flash arrays
 FC-NVMe Standardized in Mid-2017
- RoCEv2, iWARP and InfiniBand are RDMA-based but not compatible with each other

NVMe-oF RDMA Standardized in 2016

- FCoE fabric is an option
- NVMe/TCP is here! Standardized in NOV2018

RDMA Use Cases by Application

SD®

VM Migration

CEPHS

NVMe-oF™ RDMA – potential challenges

Infrastructure and Skillset change?

Not Automatic

Not Precise

Not for everyone

Congestion

Keeping the network 'lossless'

RDMA/**OEFD** expertise

Skillset Requirements

RNIC **Upgrade Required**

RDMA Camps

Creates Islands

Backward Compatibility

Relationship Status: Microsoft and RoCE

Follow

After endless support calls with customers struggling with the configuration complexity of RoCE, we have updated our RDMA network recommendations:

docs.microsoft.com/en-us/windows-...

Storage Spaces Direct hardware requirements

□ 04/11/2018 • ⊙ 3 minutes to read • Contributors • ⊕ ⊕ ⊕ ⊕ all

Networking

- NICs that are remote-direct memory access (RDMA) capable, iWARP (recommended) or RoCE
- Two or more NICs for redundancy and performance
- 25 Gbps network interface or higher

See the Microsoft Blog – comparing the RDMA types

https://blogs.technet.microsoft.com/filecab/2017/09/21/storage-spaces-direct-with-cavium-fastling-41000/

NVMe Transport Performance Comparisons

iSCSI adds 82% more latency, Delivers fewer IOPS

NVMe-oF Latency Comparisons 4KB Random Reads Single Thead and IO Depth

NVMe-oF IOPS Comparisons

32KB Random Reads 8 Threads and 32 IO Depth

Transport NVMe Natively over Fibre Channel

Low Latency

Reliable, Secure, Available

Leverage Existing Investments in Fibre Channel

FC-NVMe T11 Committee

Ecosystem Ready

FCP vs. FC-NVMe

FC-NVMe Scales in performance

Use Cases by Fabric

SD®

No one size fits all!

Performance at the cost of complexity

Logos are indicative of workload characteristics only.

Leverage existing infrastructure. Reliability is key

Simplicity is key. Balance of performance and cost

NVMe-oF: NVMe/TCP

- What: Defines a TCP Transport Binding layer for NVMe-oF
- Promoted by Facebook, Google, Intel, Marvell etc.
- Not RDMA-based, Standardized on 15NOV18
- Why:
 - Enables adoption of NVMeoF into existing datacenter
 IP network environments
 that are not RDMA-enabled

NVMe-oF Driver Stack

Offloading NVMe/TCP

Accelerating NVMe/TCP

4K Write IO - I pending latency [usec]

Cost of I/O – NVMe/TCP

Significant CPU Savings with NVMe/TCP Offload

Drivers for FC-NVMe Security

Security and Privacy Sensitive Verticals

Cost of a data breach and Recent events

sources: databreaches.net. IDTheftCentre and media reports

None of these breaches have been directly attributed to Fibre Channel

Source: IBM Security

Isn't FC Secure Already?

Trusted Storage Interconnect for Decades

Physical Security

• Data Centers are physically secured

Segregation

• Fibre Channel SANs are segregated networks

Partitioning

• FC Zoning ensures fabric partitioning

Masking

• LUN masking restricts access to specific LUNs

Management

• Out-of-Band Management (IP) is secure, OS Controls

- New Data Center Architectures bring new threats
 - Distributed data centers Remote replication and DR backups may be accessed by different users over Fabrics that span several sites
 - Multi Tenant data centers Need to segregate and protect data traversing the same wire
- Increasing scale of FC SANs
 - Networks can be misconfigured
 - Fabric configuration databases are shared, have WKAs
- Existing mechanisms may not be enough
 - Switches are the sole entity that grant/deny access
 - Authorization based
 - "Segmentation" tools being used to implement "Security"
 - Soft zoning, LUN Masking

Potential DC Storage Security Threats

Mitigated by Fibre Channel SAN Security

FC-SP-2: What and Why?

- Why?: Need to transition SANs from Authorization and segmentation based FC security to authentication and encryption based security!
- What? FC-SP-2 is a ANSI/INCITS standard (2012) that defines protocols to –
 - Authenticate Fibre Channel entities
 - Setup session encryption keys
 - Negotiate parameters to ensure per frame integrity and confidentiality
 - Define and distribute security policies over FC
- Designed to protect against several classes of threats

Fabric Security Architecture

Components of FC-SP-2 Security Architecture

Authentication Infrastructure

Secret, certificate, password and preshared key based architecture

Authentication

Protocol to assure identify of communicatin g entities, negotiation of security requirement and protocol

Security Associations

Protocol to establish Shared key between communicatin g entities, Based on IKEv2 (RFC4595)

Crypto Integrity Confidentiality

Frame by
frame
encryption,
replay
protection,
origin
authentication,
ESP_Header
or
CT_Authentic
ation

Authorization

Fabric policies that control which entities can connect with each other, management access to the fabric

FC-SP-2 ESP_header

SD®

- ESP_header (optional) is a layer 2 security protocol that provides
 - Origin authentication
 - Integrity
 - Anti-replay protection
 - Confidentially
- Encapsulating Security Payload (ESP) is defined in RFC 4303
- FC-FS-3 defines optional headers for Fibre Channel, FC-SP defines how to use FSP in Fibre Channel
- Similar protections exist for CT_Authentication

Silicon Root of Trust

Protecting the Integrity of Fibre Channel Firmware

Key Takeaway

Not "just" about "fabrics' performance

Culture and Install Base

Use Cases and Security

SD®

That's it!

