Using SmartNICs as New Platform for Storage Services

Fazil Osman
Broadcom Corporation
Why a SmartNIC

- Moore’s Law diminishing returns
 - Vertical scaling power & cost model no longer viable
- CPU costs increasing
 - Economic benefits to limiting core count
- Multi-socket interconnect bottleneck
 - I/O, memory transactions across interfaces add latency
 - 2nd socket often used to get more memory and I/O
 - TCO penalty for 2nd socket
- Distributed cloud architecture
 - Smaller fault domains

![42 Years of Microprocessor Trend Data](image)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten.

![Monthly Costs](image)

3yr server & 10yr infrastructure amortization

Source: James Hamilton, AWS
What is SmartNIC

Architectural flexibility to **quickly offload** multiple overhead IaaS services

- **Onload** Hardware Appliances...
 - Firewall
 - IDS/IPS
 - SD-WAN
 - Router
 - ADC
 - vTAP
 - Packet Broker

- **...Offload** SDS, SDN, NFV Services
 - NVMe-oF
 - RAID/EC
 - KV Store
 - IPSec/SSL/TLS
 - vSwitch
 - vRouter
 - NFV VNFs
Evolution of SmartNIC…

FPGA + NIC

Pros
- Typical single-function offload
- Good performance

Cons
- Hard to design for performance
- Slow feature velocity (RTL)
- High power
- Large devices are expensive

Network Function Processor

Pros
- More than single function

Cons
- Non-standard programming
- Can be expensive
- High power

SmartNIC

Pros
- Performance/Watt
- General-purpose with standard programming
- Great feature velocity

Cons
- Performance varies based on CPUs, DDR, and availability of integrated accelerators

HFT, HPC, Telco I/O

Telco I/O

Cloud DC & Telco
Platform Economics: CPU Workload Partitioning

<table>
<thead>
<tr>
<th>Service</th>
<th>Typical Utilization</th>
<th>Example (165W, 18C)</th>
<th>Example (165W, 18C)</th>
<th>~18 Cores Remaining</th>
<th>~4-6 Cores Consumed</th>
<th>~2-4 Cores Consumed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Services</td>
<td><50% Utilization Typical with Virtualization*</td>
<td>x86 36 Cores</td>
<td>x86</td>
<td>18 Cores Remaining</td>
<td>4-6 Cores Consumed</td>
<td>2-4 Cores Consumed</td>
</tr>
<tr>
<td>Networking Services</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technologies</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AES Encryption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NVMe-oF™</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OVS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>contrail</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VNF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Only 8-12 Cores Available for Applications

- Services can consume most of the remaining cores

* Gartner and Moor Insights & Strategy

~ $8,000 Platform
Including Southbridge and High-Performance NIC

~ 380W Platform
Including Southbridge and High-Performance NIC

Typical with Virtualization* ~18 Cores
Often oversubscribed for memory

18 Cores Remaining

~4-6 Cores Consumed

~2-4 Cores Consumed

~36 Cores
x86

~18 Cores Remaining

~4-6 Cores Consumed

~2-4 Cores Consumed

~380W Platform
Including Southbridge and High-Performance NIC

~8,000 Platform
Including Southbridge and High-Performance NIC
Platform Economics: SmartNIC Workload Partitioning

~ $4,000 Platform
Including Southbridge and High-Performance NIC Built Into SmartNIC

<50% Utilization
Typical with Virtualization*

Storage Services

Minimal Virtualization Overhead

AES Encryption
NVMe-oF™

Networking Services

16-18 Cores Remaining

16-18 Cores Available for Applications

16-18 Cores Available for Applications

Run on SmartNIC

Run on SmartNIC

Offloading services to SmartNICs frees up cores for applications

* Gartner and Moor Insights & Strategy
SmartNIC Storage Use Cases

- Server CPU
- Datacenter Fabric
- SmartBOF

Clients
- x86
- SmartNIC 10/25/50G
- Eliminates x86 Socket
- Simplifies Operational Model
- Greater Security Isolation

Targets
- Smaller Fault Domain
- Lower TCO
- SmartNIC 100G

Compression
- NVMe

Storage Services
- iSCSI to NVMe-oF bridge
- RAID/EC
- End-to-end software-defined storage
- End-to-end NVMe/TCP
- NVMe-oF target stack
- In-memory database
- Virtual SAN
- Key-value store

2019 Storage Developer Conference. © Broadcom Corporation. All Rights Reserved.
Example: Small vs. Large Fault Domains

Test Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>4x Stingray Targets</th>
<th>2 Socket-x86 Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Link</td>
<td>4x 25G</td>
<td>1x 100G</td>
</tr>
<tr>
<td>NVMe SSDs (x2 Gen3)</td>
<td>32</td>
<td>30</td>
</tr>
<tr>
<td>4K Random Read</td>
<td>2.0M IOPS</td>
<td>1.8M IOPS</td>
</tr>
<tr>
<td>512K Sequential Write</td>
<td>37K IOPS</td>
<td>18K IOPS</td>
</tr>
<tr>
<td>Tail Latency (mean – P90% – P99.9%)</td>
<td>2 ms – 6.2 ms – 11 ms</td>
<td>2.3 ms – 12.9 ms – 23.5 ms</td>
</tr>
<tr>
<td>CPU+DRAM Power (estimated)</td>
<td>160W</td>
<td>300W</td>
</tr>
</tbody>
</table>

SmartNIC Disaggregated Storage Advantages
- Better performance
- Lower power
- Smaller fault domain reduces blast radius exposure (16TB vs 60TB)
Stingray-Based Storage Platforms

WDC F3100 and Stingray
- Low power
- NVMe-oF Enabled
- Software-programmable
- Low latency
- Up to 10 Modules and >20M IOPS

2U-24 Drive Systems
- Full HA Support
- NVMe-oF Enabled
- >10M IOPS

Scale Out

Enterprise Class

Celestica Euclid

AIC Manta

Winstron Lymma

Copyright © 2019 Broadcom. All Rights Reserved. The term "Broadcom" refers to Broadcom Inc. and/or its subsidiaries.
RedisEdge on SmartNIC Use Case

Deployed within hours using standard container
SmartNIC in NVMe-oF™ – We Have Come A Long Way but…

OS Support for NVMe-oF
- Limited to recent versions of Linux
- No announced support for other operating systems

Ecosystem is maturing but broad adoption requires solution to OS support problem
Pure Storage Use Case

Bringing NVMe over Fabrics to Windows client solutions

Problem:

Windows does not support NVMe-oF natively limiting FlashArray scalability

Solution:

Co-developed Windows iSCSI to NVMe-oF on Stingray SmartNIC

SQL SERVER DB SNAPSHOT PORTABILITY WITH CLOUdsnAP

STINGRAY ENABLING NVME-OF™ FOR PURE FLASHARRAY//X

Windows SQL server is largest application with Pure customers
Broadcom Glass Creek Adapter

Introducing Glass Creek

Applications

- Storage disaggregation for any OS
- Works with standard NMVe drivers
- Storage virtualization
 - Bare metal and virtualized servers
- Storage services offload
 - Logical Volume Management
 - RAID/EC, De-dupe, Crypto

- NVMe-oF Initiator
- Networking Services vSwitch
- Storage Services RAID/Crypto/LVM
- Accelerators
 - TruFlow™
 - Crypto
 - RAID/EC
 - De-dupe
- L2
- RoCE
- NVMe
- SlimSAS
- 2x25G
- 50G NIC
- 2x25G

SSD...SSD

2019 Storage Developer Conference. © Broadcom Corporation. All Rights Reserved.
Stingray Solutions

- **NVMe-oF SmartBOFs**
 - High performance fabric storage appliances
 - Enterprise-capable high-availability solutions
 - Cloud scale with low blast radius

- **Expanding NVMe-oF™ ecosystem**
 - Multiple vendors
 - NVMe-oF and **now** NVMe virtualization

- **Highest performance SmartNIC**
 - System architecture, cost and performance
 - End of Moore’s Law
 - Dual socket architectures are inefficient

- **SmartNIC Use cases**
 - General-purpose programmability
 - Offloading storage and networking services
 - Bare metal and virtualization servers
 - Security