

September 23-26, 2019 Santa Clara, CA

Hardware Security for Performance Based TCP Attached Storage

Scott Schweitzer Solarflare a Xilinx Company

30-Seconds of Background

- 17 years with IBM, first 11 at Research
- 3 years with NEC as Itanium Product Mgr
- 8 years with Myricom as HPC/HFT Sales/Mktg
- 6 years with Solarflare as Sales/Mktg
- Now Xilinx outbound DCG Mktg

Spine switches

16×16 Xbat

DATA CENTER GROUP

Software Based Acceleration

Source: Hilbert, M., & López, P. (2011). The World's Technological Capacity to Store, Communicate, and Compute Information. *Science*, 332(6025), 60–65. <u>http://www.martinhilbert.net/WorldInfoCapacity.html</u>

Kernel I/O Slows Down Data

- Big Data *requires* fast I/O solutions
- Normal I/O solutions run all I/O traffic through the OS Kernel
 - Memory copies
 - Context switch 1400ns Intel E5520*
 - Lag and increased CPU usage
- While great for managing "uncontrolled" environments, this approach impacts performance of cloud environments

SD©

First There Was User Space Acceleration SD®

- By bypassing the kernel, user space I/O solutions overcome this issue
 - No context switching
 - No memory copies
- User space I/O increases bandwidth while decreasing CPU utilization
 - Improved CapEx and OpEx
 - Better solution scalability

User Space Cloud App Acceleration

2019 Storage Developer Conference. © Solarflare a Xilinx Company. All Rights Reserved.

SD[®]

User Space Performance is Proven

- Pioneered user-space acceleration for the most demanding markets:
 - FinTech
 - Managed Service Providers
- Onload in the cloud provides performance gains for:
 - IMDBs
 - Software Load Balancers
 - HTTP and Reverse Proxy Servers
- Primarily software based application acceleration

SSDs Have Changed Storage

9

SD[®]

NVMe-oF Options – Protocol Stacks

Application			
File System / Block IO			
NVMe Transport / Driver			
NVMe FC Plug-in	NVMe RoCE Plug-in	NVMe iWARP Plug-in	NVMe TCP Plug-in
FC4 Stack	RDMA OFED Stack	RDMA OFED Stack	ТСР
FC Driver	UDP	ТСР	NIC Driver
	NIC Driver	NIC Driver	
Fibre Channel Switch	DCB Ethernet Switch	L2 Ethernet Switch	L2 Ethernet Switch

2019 Storage Developer Conference. © Solarflare a Xilinx Company. All Rights Reserved.

SD[©]

NVMe/TCP Testing on SuperMicro Server SD@

NVMe/TCP Benchmarking Read Latency SD©

Hardware Based Acceleration

FPGAs are a Critical Acceleration Component

-Santa Clara, CA

SD[®]

Accelerated Apache Spark

SD @

Hardware Based Security for Network Storage

Four Keys to Hardware Based Security SD@

Tamper Resistant NIC platform

Agentless Enforcement & Telemetry

Secure External Control Plane

Centralized Orchestration

Tamper Resistant NIC Platform

- Firmware must be digitally signed & checked
- Log ALL attempts to load tampered firmware
- Be capable of terminating a secure connection without requiring an agent
- NO Root access to security functions
- Binding process to link NIC to central controller

Agentless Enforcement & Telemetry

- Agentless is means NO host based software is required
- Enforcement on all traffic, Rx and Tx
 - Five tuple, Regx or both depending on HW
 - Filtering & Alerting
 - Support for millions of rules and IPv6
 - Nominal latency impact
- Flow reporting to central controller
 - New flows
 - Packet and byte counts
 - Rates/flow if HW can support

SD (19

Secure External Control Plane

 Pathway needs to exist so centralized management can be enabled

 On the NIC side this TCP management needs to be secure & fully autonomous

Centralized Orchestration

- Terminate secure control plane for all bound NICs under management
- SDN "Neutron" like controller with RestAPI
- Support for high level abstractions
- Cluster capable database to store all objects
- Double log everything, standard Linux system logs, and proprietary

Why Hardware Enforcement?

- Because software solutions are easily beat
- Hardware enforcement should be transparent to root users
- Adds another layer to the security onion
- Zero attackable local surface area
- Cloak server from all but service ports
 - Becoming a high performance Honeypot
- Extremely high performance ~200ns
 - Fortinet appliances by contrast 2500ns
- Compliance validation solution

Rise of the SmartNIC

SD®

All the above is possible and very probable with the next generation of SmartNICs