
2019 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved. 1

Linux NVMe and block layer
status update

Christoph Hellwig

2

● Covers new material since my “Past
and present of the Linux NVMe driver”
talk from SDC 2017

● The latest kernel version in September
2017 was Linux 4.13, the latest kernel
today is Linux 5.3.

3

NVMe driver structure

nvme.ko (PCIe) nvme-rdma.ko nvme-fc.ko

nvme-fabrics.konvme-core.ko

4

Major new code modules
● TCP transport

● Core NVMe code:
– Multipathing (including ANA)

– NVMe tracing

5

NVMe driver structure

nvme.ko (PCIe) nvme-rdma.ko nvme-fc.ko

nvme-fabrics.konvme-core.ko

nvme-tcp.ko

New TCP transport
 (since Linux 5.0, Mar 2018)

6

 Multipathing
● Multiple NVMe controllers can access the same namespace

– Much tighter architecture model than SCSI

● Asynchronous Namespace Access (ANA) helps communicating
access rules
– Similar to ALUA in SCSI but simpler

and more consistent

● Latency and IOPS matter and not just
throughput!

7

Legacy SCSI multipathing

File system

Device mapper multipath

SCSI midlayer

multipathd

8

Native NVMe multipathing

● Small addition to the core NVMe driver (< 1k LOC including ANA)
– Multiplexes access to the /dev/nvmeXnY block devices to multiple

controllers if present, transparent to the file system / application.

– Pathing decisions based on ANA state, NUMA proximity or optionally
a simple round robin algorithm

– Up to 6x better IOPS than dm-multipath while using less CPU cycles

– Automatic setup

9

NVMe tracing
● Tracing of low-level NVMe command and queue state

– Does not replace blktrace!

10

NVMe tracing output
_-----=> irqs-off
/ _----=> need-resched
| / _---=> hardirq/softirq
|| / _--=> preempt-depth
||| / delay
TASK-PID CPU# |||| TIMESTAMP FUNCTION
| | | |||| | |
 kworker/u16:2-9894 [000] 103979.005689: nvme_setup_cmd: nvme0: disk=nvme0n1, qid=1, cmdid=461, nsid=1,
flags=0x0, meta=0x0, cmd=(nvme_cmd_write slba=250534048, len=31, ctrl=0x0, dsmgmt=0, reftag=0)
 kworker/u16:2-9894 [000] 103979.005708: nvme_setup_cmd: nvme0: disk=nvme0n1, qid=1, cmdid=462, nsid=1,
flags=0x0, meta=0x0, cmd=(nvme_cmd_write slba=59542456, len=15, ctrl=0x0, dsmgmt=0, reftag=0)
 kworker/u16:2-9894 [000] 103979.005712: nvme_setup_cmd: nvme0: disk=nvme0n1, qid=1, cmdid=463, nsid=1,
flags=0x0, meta=0x0, cmd=(nvme_cmd_write slba=751153120, len=7, ctrl=0x0, dsmgmt=0, reftag=0)
 <idle>-0 [003] d.h. 103989.671361: nvme_complete_rq: nvme0: disk=nvme0n1, qid=4, cmdid=952, res=0,
retries=0, flags=0x0, status=0
 <idle>-0 [003] d.h. 103989.671392: nvme_complete_rq: nvme0: disk=nvme0n1, qid=4, cmdid=953, res=0,
retries=0, flags=0x0, status=0

11

Polling rework
● Polling NVMe completions have been supported since Linux 4.4

– Polling was performed on the “normal” CQs by the submitting thread

– Thus limited to QD=1

– Hybrid polling (added in Linux 4.10) helped to drastically reduce CPU usage

● A new I/O approach has been developed to allow for batched
polling (landed in Linux 5.1)
– See the “Improved Storage Performance Using the New Linux Kernel I/O Interface”

talk on Thursday for interface details!

– Uses a dedicated polling CQ and a dedicated polling thread to perform
millions of IOPs while using a single core

– Initially supported for PCIe transport, now also on RDMA and TCP

12

io_uring performance

Graph from Jens Axboe via twitter

13

Scatter/Gather list support
● SGLs are the traditional way to specify data transfers in storage controllers

– NVMe 1.0 only supported a different scheme called PRPs

– Later SGL support was added to NVMe (PCIe)

– Fabrics always used a SGL scheme

● Linux gained support for SGL on NVMe/PCIe in Linux 4.15
(Jan 2018)

– Allow for much more efficient large data transfers

14

PRPs vs SGLs

Offset 0 Length 65536Addr X

Addr X + 4096

Addr X + 8192

PRP transfer: SGL transfer:

Addr X + 61440

...

15

Multipage bio_vec structures

struct bio_vec {
 struct page *bv_page;
 unsigned int bv_len;
 unsigned int bv_offset;
};

● The bio_vec structure is a in-memory scatter/gather structure
– Used everywhere in the block layer (and now also in the network stack)

– Historically only used for fragments inside a page

– Since Linux 5.0 (Mar 2019) can store arbitrarily large segments

● Together with SGL support allows transferring huge pages very efficiently

16

Single Segment optimizations
● Linux creates a “scatterlist” structure from the bio_vecs before submitting I/O

– Helps with IOMMU batch mapping

– Used to help with merging multiple bio_vecs

● The structure duplicates the bio_vecs and protocol-specific SGLs
– Preferably avoid it entirely

– For now we can only easily skip it for the single PRP/SGL entry case

● Up to 4% speedups for high-IOPS workloads (Linux 5.2)
– Every cacheline counts!

17

Performance optimizations
● Dedicated read queues (Linux 5.1 for PCIe)

– Allows placing reads on separate NVMe queues from other I/O

– Later also added to RDMA/TCP

● Lockless CQs (Linux 5.1 for PCIe)
– The addition of explicit poll queues allows lockless access to other CQs

● Batched doorbells writes (Linux 5.0 for PCIe)
– Avoid ringing the SQ doorbell if more commands are pending

● Multiple inline segments (Linux 4.19 for RDMA)
– Reduces protocol round trips and thus latency

18

PCIe Peer to Peer transfers
● Allow one PCIe device to transfer data from and to another

without involving the host CPU
– One device needs to present a memory BAR, and the other one accesses it

– PCIe NVMe controllers can expose the Controller Memory Buffer (CMB) for P2P
 transfers.

– The NVMe over Fabrics target can initiate P2P transfers from the RDMA HCA to /
from the CMB

– The PCI layer P2P framework, NVMe and RDMA support was added in Linux 4.19,
still under development (e.g. IOMMU support)

● Warning: NVMe CMB support has grave bugs in virtualized environments!

19

Consumer grade NVMe
● NVMe has fully arrived in the consumer space

– m.2 NVMe devices are everywhere, various BGA (solder on devices) as well,
other new small form factors

– A lot more buggy devices (up to 13 quirk bits now)

– Linux 5.4 will support recent Apple Mac Book “NVMe” controllers

● 128 byte SQEs, shared tags, single interrupt vectors

20

 Power Management
● Linux uses Autonomous Power state transitions (APST) since

Linux 4.12
– Major runtime power savings

– Lots of device / platform issues unfortunately

● Since Linux 5.3 Linux can also use APST for system suspend
– Based on the Microsoft modern standby concept

– Keeps causing problems with various device / platform combinations

21

Intel chipset problems
● Intel consumer chipset may run in “RAID” mode

– Hides one or multiple NVMe controllers behind an AHCI controller

– Not documented

– Not easily discoverable

– No way to quirk devices based on PCI IDs

– No way to support SR-IOV or proper reset behavior

● Seems like an intentional sabotage by Intel
– Causes major sabotage with Linux laptop support

– Can’t be used by anything but the Intel binary windows driver blob

22

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

