

Accelerating RocksDB with NVMe™ Zoned SSDs

Hans Holmberg, R&D Technologist Emerging System Architectures Group

Western Digital

RocksDB on Zoned NVMe™ SSDs

Agenda

SD®

- Zoned Namespaces 101
- Adapting RocksDB for Zoned SSDs
- Demo
- Results
- What's next?

Zoned Namespaces 101

What are Zoned Block Devices?

The new paradigm in storage

- The storage device logical block addresses are divided into ranges of zones.
- Writes within a zone must be sequential.
- The zone must be erased before it can be rewritten.

Zoned Storage on SMR

- SMR (Shingled Magnetic Recording)
 - Enables areal density growth
 - Shares flash access model
 - Erase before re-write

- Zoned Access
 - Zoned Block I/F standardized in INCITS
 - Zoned Block Commands (ZBC): SAS
 - Zoned ATA Commands (ZAC): SATA
 - Host/Device cooperate to optimize RMW aspect of SMR by enforcing sequential writes and enabling host FTL model

Zone

Ubiquitous Workloads

The cloud applies multiple workloads to a single SSD

Video

SSDs write log-structured to the media that requires garbage collection

Multiplex data streams onto the same garbage collection units

Increases

Write Amplification, Over-Provisioning and thereby <u>Cost</u>

Decreases

throughput and latency predictability

Zones for Solid State Drives

Eliminate data streams multiplexing:

- Significantly decreases write amplification, over-provisioning and thereby reduces cost
- Increases throughput and latency predictability

ZNS: Synergies w/ ZAC/ZBC software ecosystem

- Device exposed as a Zoned Block Device (ZBD)
- Reuse existing work already done for ZAC/ZBC devices
- Existing ZBD-aware file systems & device mappers "just work"
 - Few additions to support to ZNS
- Integrates with file-systems and applications
 - RocksDB, Ceph, fio, libzbd, ...
- ZAC/ZBC devices are already in production at technology adopters and a mature storage stack is available through the Linux® eco-system

*= Enhanced data paths for SMR/ZNS drives

Zoned Namespaces

- Ongoing Technical Proposal in the NVMe working group
- New Zoned Command Set Inherits the NVM Command Set and adds zone support.
- Aligns to the existing host-managed models defined in the ZAC/ZBC specifications.
 - Note that it does not map 1:1. Beware of the details.
- Optimized for Solid State Drives
 - Zone Capacity
 - Zone Append
 - Zone Descriptors

Host-Managed Zoned Block Devices

Zone States

- Empty, Implicitly Opened, Explicitly Opened, Closed, Full, Read Only, and Offline.
- Changes state upon writes, zone management commands, and device resets.
- Zone Management
 - Open Zone, Close Zone, Finish Zone, and Reset Zone
- Zone Size & Zone Capacity^(NEW)
 - Zone Size is fixed
 - Zone Capacity is the writeable area within a zone

ZonedStorage.IO

RocksDB on ZNS

RocksDB, a good fit for ZNS

SD®

- Persistent key-value store for fast storage environments
- Log-structured, flash friendly
- Customizable storage back ends

WA on a conventional SSD

Target: End-to-end-integration

Challenges

SD®

- Multiple, parallel files being written to
 - Map each file to a set of zones
- All writes must be sequential and ordered
 - Use direct I/O and the deadline scheduler
- Limits on number of open zones
 - Finish zones when done with writes

RocksDB on-disk data structures Writeahed-log (WAL)

RocksDB on-disk data structures Sorted string tables

Mapping files to zones

Approach

- Files are mapped to zones
- Zone management through file management
 - Zones are allocated when creating a new file
 - Zones are released after file deletion
 - Zones can be rewritten after being reset

No device-side garbage collection

Demo (Random Insert Workload)

Results

Smart data placement

device write amplification
3-6X WA's measured on conventional drives (28% OP)

No on-drive garbage collection

20% increase in capacity
Compared to a conventional 28% OP SSD

20% TCO reduction Increases lifetime/writes significantly

Conclusions

SD®

- Easy to leverage flash-friendy data placement
 - ZNS enables applications to become flash-optimal
- Zoned Block Device Software Eco-system already available
 - Libraries, tools, emulation
- Easy to integrate with existing storage stack

What's next?

SD®

- Upstream support to RocksDB
- More ZNS end-to-end-integration:
 - Databases (LSM-based, logs, ...)
 - Filesystems (btrfs, ceph, ...)
 - Cloud infrastructure

Thanks!

Western Digital and the Western Digital logo are registered trademarks or trademarks of Western Digital Corporation or its affiliates in the US and/or other countries. The NVMe word mark and NVM Express design mark are trademarks of NVM Express, Inc. All other marks are the property of their respective owners.

