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The Importance of Data Locality

▪ Application performance
▪ Data access throughput and latency
▪ Schedulability

▪ Infrastructure design
▪ Data storage capability
▪ Composability
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Orchestrating Storage

▪ LINSTOR is an open source SDS
▪ Controls native Linux storage systems
▪ Separate control plane accessible via REST
▪ Provisions local and/or remote storage
▪ Close to zero overhead

▪ Integration with Kubernetes is simple
▪ CSI plugin
▪ Typical PVC/PV controls
▪ Helm chart and operator
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LINSTOR Architecture
▪ One “Controller”

▪ External to K8S
▪ Or inside K8S

▪ Many “Satellites”
▪ Via traditional init
▪ Via Daemonset

▪ Privileged

▪ REST API
▪ CSI
▪ Various clouds
▪ CLI client
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LINSTOR Architecture
▪ Block Storage

▪ Linux
▪ Replication
▪ Locally
▪ Remotely
▪ Rich 

feature set
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Orchestrating Applications

▪ Kubernetes is an obvious choice
▪ Container images package well
▪ Pods provide predictable environments
▪ Integrations are rich

▪ But stateful applications are challenging
▪ K8S clusters are “flat”, resources anywhere by “default”
▪ Stateful applications run best when “close” to their 

storage and the rest of the stack
▪ Yet over-collocating is possible (noisy neighbor)
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Ensuring Locality

▪ LINSTOR controls remote and local storage
▪ DRBD can be accessed via a local replica
▪ LVM/ZFS/loop volumes can be used “bare” locally
▪ DRBD, NVMe-oF, and iSCSI target/initiators

▪ Kubernetes can account for placement
▪ CSI “PlacementPolicy” collocates storage + pods (new)
▪ CSI “localStoragePolicy” can also accomplish this
▪ Pod and node affinity / anti-affinity control placement
▪ Taints and tolerances control node aversion
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Exploring Theory and Practice
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Looking at the 
Infrastructure

▪ K8S masters and workers:
▪ HA
▪ Multi-AZ deployment
▪ Single worker node per AZ

▪ Resources
▪ Pods placed anywhere
▪ Storage placed anywhere

▪ What’s “wrong” here?
▪ App inter-stack latency
▪ DB backing data is remote
▪ Only one data replica
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Reducing Latency
▪ App-to-app latency

▪ Colocating reduces latency
▪ Can be accomplished with 

node affinity or inter-pod 
affinity

▪ Easy to accomplish

▪ What’s “wrong” here?
▪ DB backing data is remote
▪ Only one data replica
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Reducing Latency
▪ Storage latency

▪ Collocating reduced latency
▪ This is looking pretty good

▪ What’s “wrong” here?
▪ Only one DB instance
▪ Only one data replica
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Increasing Durability

▪ Storage replication
▪ DRBD replicates block 

storage
▪ Data is local in two places, 

and remote in one
▪ Reads can be balanced 

across replicas
▪ Replicas are “HA”

▪ What’s “wrong” here?
▪ Only one DB instance
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Increasing Durability

▪ Storage replication
▪ DRBD replicates block 

storage
▪ Data is local in two places, 

and remote in one
▪ Reads can be balanced 

across replicas
▪ Remote replicas are “HA”

▪ What’s “wrong” here?
▪ Only one DB instance
▪ DB storage is remote
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Increasing Durability

▪ Storage replication
▪ DRBD replicates block 

storage
▪ Data is local in three places
▪ Reads can be balanced 

across replicas
▪ More replicas can be lost 

without impact
▪ Quorum possible

▪ What’s “wrong” here?
▪ Only one DB instance



2019 Storage Developer Conference. © LINBIT USA, LLC.  All Rights Reserved. 15

Increasing Durability 
and Availability

▪ DB replication
▪ DB replicates entries
▪ DB is now HA
▪ Application is aware of 

replicated data
▪ Atomic unit of transfer is 

smaller than a single block
▪ Very little network overhead

▪ Unless multi-master
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Increasing Durability 
and Availability

▪ DB replication
▪ DB replicates entries
▪ DB is now HA
▪ Application is aware of 

replicated data
▪ Atomic unit of transfer is 

smaller than a single block
▪ Very little network overhead

▪ Unless multi-master

▪ What’s “wrong” here?
▪ It’s not always this ideal out 

of the box
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Considering Locality

▪ A bit messy
▪ Pods can be placed 

anywhere
▪ Data replicas can be auto-

placed
▪ It can get weirder than this

▪ Like collocated DB

▪ What’s “wrong” here?
▪ It was supposed to took like 

the previous diagram.
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Considering Locality
▪ Back to reality

▪ Pod affinity / anti-affinity
▪ Can be a suggestion
▪ Against nodes

▪ Schedules lighter, simple

▪ Against other pods
▪ More dynamic, complex

▪ LINSTOR PlacementPolicy
▪ Collocates pods and 

volumes in failure domains
▪ Intelligently allocates

▪ What’s “wrong” here?
▪ Potential noisy neighbor (if 

failure domain is a node)
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Considering Locality

▪ The case for anti-affinity
▪ Resource scheduling 

contention
▪ Security and other motivators 

for workload isolation
▪ Differently-abled nodes

▪ Can also be easily accomplished 
with node affinity

▪ Remote access
▪ While remote, remote DB 

access is typically leaner 
over the network than remote 
block access, so is preferred.
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Please take a moment 
to rate this session. 

Your feedback matters to us. 
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