
2019 Storage Developer Conference. © LINBIT USA, LLC. All Rights Reserved. 1

Ensuring Application Data
Locality in Kubernetes

David Hay
LINBIT

2019 Storage Developer Conference. © LINBIT USA, LLC. All Rights Reserved. 2

The Importance of Data Locality

▪ Application performance
▪ Data access throughput and latency
▪ Schedulability

▪ Infrastructure design
▪ Data storage capability
▪ Composability

2019 Storage Developer Conference. © LINBIT USA, LLC. All Rights Reserved. 3

Orchestrating Storage

▪ LINSTOR is an open source SDS
▪ Controls native Linux storage systems
▪ Separate control plane accessible via REST
▪ Provisions local and/or remote storage
▪ Close to zero overhead

▪ Integration with Kubernetes is simple
▪ CSI plugin
▪ Typical PVC/PV controls
▪ Helm chart and operator

2019 Storage Developer Conference. © LINBIT USA, LLC. All Rights Reserved. 4

LINSTOR Architecture
▪ One “Controller”

▪ External to K8S
▪ Or inside K8S

▪ Many “Satellites”
▪ Via traditional init
▪ Via Daemonset

▪ Privileged

▪ REST API
▪ CSI
▪ Various clouds
▪ CLI client

2019 Storage Developer Conference. © LINBIT USA, LLC. All Rights Reserved. 5

LINSTOR Architecture
▪ Block Storage

▪ Linux
▪ Replication
▪ Locally
▪ Remotely
▪ Rich

feature set

2019 Storage Developer Conference. © LINBIT USA, LLC. All Rights Reserved. 6

Orchestrating Applications

▪ Kubernetes is an obvious choice
▪ Container images package well
▪ Pods provide predictable environments
▪ Integrations are rich

▪ But stateful applications are challenging
▪ K8S clusters are “flat”, resources anywhere by “default”
▪ Stateful applications run best when “close” to their

storage and the rest of the stack
▪ Yet over-collocating is possible (noisy neighbor)

2019 Storage Developer Conference. © LINBIT USA, LLC. All Rights Reserved. 7

Ensuring Locality

▪ LINSTOR controls remote and local storage
▪ DRBD can be accessed via a local replica
▪ LVM/ZFS/loop volumes can be used “bare” locally
▪ DRBD, NVMe-oF, and iSCSI target/initiators

▪ Kubernetes can account for placement
▪ CSI “PlacementPolicy” collocates storage + pods (new)
▪ CSI “localStoragePolicy” can also accomplish this
▪ Pod and node affinity / anti-affinity control placement
▪ Taints and tolerances control node aversion

2019 Storage Developer Conference. © LINBIT USA, LLC. All Rights Reserved. 8

Exploring Theory and Practice

2019 Storage Developer Conference. © LINBIT USA, LLC. All Rights Reserved. 9

Looking at the
Infrastructure

▪ K8S masters and workers:
▪ HA
▪ Multi-AZ deployment
▪ Single worker node per AZ

▪ Resources
▪ Pods placed anywhere
▪ Storage placed anywhere

▪ What’s “wrong” here?
▪ App inter-stack latency
▪ DB backing data is remote
▪ Only one data replica

2019 Storage Developer Conference. © LINBIT USA, LLC. All Rights Reserved. 10

Reducing Latency
▪ App-to-app latency

▪ Colocating reduces latency
▪ Can be accomplished with

node affinity or inter-pod
affinity

▪ Easy to accomplish

▪ What’s “wrong” here?
▪ DB backing data is remote
▪ Only one data replica

2019 Storage Developer Conference. © LINBIT USA, LLC. All Rights Reserved. 11

Reducing Latency
▪ Storage latency

▪ Collocating reduced latency
▪ This is looking pretty good

▪ What’s “wrong” here?
▪ Only one DB instance
▪ Only one data replica

2019 Storage Developer Conference. © LINBIT USA, LLC. All Rights Reserved. 12

Increasing Durability

▪ Storage replication
▪ DRBD replicates block

storage
▪ Data is local in two places,

and remote in one
▪ Reads can be balanced

across replicas
▪ Replicas are “HA”

▪ What’s “wrong” here?
▪ Only one DB instance

2019 Storage Developer Conference. © LINBIT USA, LLC. All Rights Reserved. 13

Increasing Durability

▪ Storage replication
▪ DRBD replicates block

storage
▪ Data is local in two places,

and remote in one
▪ Reads can be balanced

across replicas
▪ Remote replicas are “HA”

▪ What’s “wrong” here?
▪ Only one DB instance
▪ DB storage is remote

2019 Storage Developer Conference. © LINBIT USA, LLC. All Rights Reserved. 14

Increasing Durability

▪ Storage replication
▪ DRBD replicates block

storage
▪ Data is local in three places
▪ Reads can be balanced

across replicas
▪ More replicas can be lost

without impact
▪ Quorum possible

▪ What’s “wrong” here?
▪ Only one DB instance

2019 Storage Developer Conference. © LINBIT USA, LLC. All Rights Reserved. 15

Increasing Durability
and Availability

▪ DB replication
▪ DB replicates entries
▪ DB is now HA
▪ Application is aware of

replicated data
▪ Atomic unit of transfer is

smaller than a single block
▪ Very little network overhead

▪ Unless multi-master

2019 Storage Developer Conference. © LINBIT USA, LLC. All Rights Reserved. 16

Increasing Durability
and Availability

▪ DB replication
▪ DB replicates entries
▪ DB is now HA
▪ Application is aware of

replicated data
▪ Atomic unit of transfer is

smaller than a single block
▪ Very little network overhead

▪ Unless multi-master

▪ What’s “wrong” here?
▪ It’s not always this ideal out

of the box

2019 Storage Developer Conference. © LINBIT USA, LLC. All Rights Reserved. 17

Considering Locality

▪ A bit messy
▪ Pods can be placed

anywhere
▪ Data replicas can be auto-

placed
▪ It can get weirder than this

▪ Like collocated DB

▪ What’s “wrong” here?
▪ It was supposed to took like

the previous diagram.

2019 Storage Developer Conference. © LINBIT USA, LLC. All Rights Reserved. 18

Considering Locality
▪ Back to reality

▪ Pod affinity / anti-affinity
▪ Can be a suggestion
▪ Against nodes

▪ Schedules lighter, simple

▪ Against other pods
▪ More dynamic, complex

▪ LINSTOR PlacementPolicy
▪ Collocates pods and

volumes in failure domains
▪ Intelligently allocates

▪ What’s “wrong” here?
▪ Potential noisy neighbor (if

failure domain is a node)

2019 Storage Developer Conference. © LINBIT USA, LLC. All Rights Reserved. 19

Considering Locality

▪ The case for anti-affinity
▪ Resource scheduling

contention
▪ Security and other motivators

for workload isolation
▪ Differently-abled nodes

▪ Can also be easily accomplished
with node affinity

▪ Remote access
▪ While remote, remote DB

access is typically leaner
over the network than remote
block access, so is preferred.

2019 Storage Developer Conference. © LINBIT USA, LLC. All Rights Reserved. 20

Please take a moment
to rate this session.

Your feedback matters to us.

	Ensuring Application Data Locality in Kubernetes
	The Importance of Data Locality
	Orchestrating Storage
	Slide Number 4
	Slide Number 5
	Orchestrating Applications
	Ensuring Locality
	Exploring Theory and Practice
	Looking at the Infrastructure
	Reducing Latency
	Reducing Latency
	Increasing Durability
	Increasing Durability
	Increasing Durability
	Increasing Durability and Availability
	Increasing Durability and Availability
	Considering Locality
	Considering Locality
	Considering Locality
	Please take a moment �to rate this session. ��Your feedback matters to us. �

