
2019 Storage Developer Conference. © 2019, Scality. All Rights Reserved. 1

MetalK8s
An opinionated Kubernetes distribution
optimized for data management

Nicolas Trangez
Senior Architect, Scality
@eikke | @scality | @zenko

ABOUT SCALITY

8 60+

120+

20+

 ~10

GLOBAL CLIENT BASEGLOBAL PRESENCE

20+
OFFICES200+

PEOPLE
NATIONALITIES

EUROPE
AMERICAS

AUSTRALIA

JAPAN

OUR JOURNEY TO KUBERNETES
Scality RING, S3 Connector & Zenko

Scality RING

- Physical servers, some VMs
- Only the OS available (incl. ‘legacy’

like CentOS 6)
- Static resource pools
- Static server roles / configurations
- Solution distributed as RPM

packages, deployed using
SaltStack

- De-facto taking ownership of host,
difficult to run multiple instances

- Fairly static post-install

On-premise
Distributed Object & File Storage

Scality S3
Connector

On-premise S3-compatible Object
Storage

- Physical servers, sometimes VMs
- Static resource pools
- “Microservices” architecture
- Solution distributed as Docker

container images, deployed using
Ansible playbooks

- No runtime orchestration
- Log management, monitoring,...

comes with solution

Scality Zenko
- Deployed on-prem or ‘in the Cloud’:

major paradigm shift
- New challenges, new opportunities
- Multi-Cloud Data Controller, must

run on multiple Cloud platforms
- See Vianney’s talk!

Multi-Cloud Data Controller

Scality Zenko
- Embraced containers as

distribution mechanism
- Some shared with Scality S3 Connector

- Decided to move to Kubernetes
- Managed platforms for Cloud

deployments, where available (GKE,
AKS, EKS,...)

- On-prem clusters

Deployment Model

Scality Zenko

- Homogenous deployment between
in-cloud and on-prem

- Various services provided by
cluster:

- Networking & policies
- Service restart, rolling upgrades
- Service log capturing & storage
- Service monitoring & metering
- Load-balancing
- TLS termination

- Flexible resource management
- If needed, easily add resources to

cluster by adding some (VM) nodes
- HorizontalPodAutoscaler

Kubernetes Benefits

Scality Zenko

- Currently using Helm chart
- Contributed many fixes and

features to upstream charts
repository

- Contributed new charts and
became maintainer of some others

- Next-gen: Zenko ‘operator’
- Can run in your cluster

(https://github.com/Scality/Zenko)
or test-drive a hosted instance for
free using Zenko Orbit at
https://zenko.io/admin

Kubernetes Deployment

https://github.com/Scality/Zenko
https://zenko.io/admin

INTERLUDE
What is Kubernetes?

Kubernetes
- “Container orchestration system”
- Actually:

- Extensible model of ‘desired reality’ in a distributed database, accessible through RESTful APIs
- Authn / authz
- Controllers to refine high-level object(s) into lower-level ones and/or reconcile reality with model
- Service(s) running on machines to realize desired reality at system level
- Set of APIs/plugins to interact with system: CRI, CNI, CSI

- In essence, ‘containers’ are only a small part of the K8s architecture
- Core unit of scheduling: Pod

- Set of containers running in single network namespace
- Pods can request attachment to persistent storage volumes

OUR JOURNEY TO KUBERNETES
MetalK8s

On-prem Kubernetes
- Can’t expect a Kubernetes cluster to be available, provided by Scality customer
- Looked into various existing offerings, but in the ends needs to be supported

by/through Scality (single offering)
- Also, many existing solutions don’t cover enterprise datacenter requirements

- Decided to roll our own

SCALITY METALK8S
AN OPINIONATED KUBERNETES DISTRIBUTION

WITH A FOCUS ON LONG-TERM ON-PREM DEPLOYMENTS

OPINIONATED
We offer an out-of-the-box experience, no non-trivial

choices to be made by users

LONG-TERM
Storage is mission-critical and sticky, can’t spawn a new

cluster to upgrade and use a load-balancer in front

ON-PREM
Can’t expect anything to be available but (physical)

servers with a base OS

MetalK8s 1.x
- Scope: 3-20 physical machine, pre-provisioned by customer or partner
- Built on top of the Kubespray Ansible playbook
- Use Kubespray to lay out a base Kubernetes cluster

- Also: etcd, CNI

- Add static & dynamic inventory validation pre-checks, OS tuning, OS security
- Based on experience from large-scale Scality RING deployments

- Augment with various services, deployed using Helm
- Operations
- Ingress
- Cluster services

- Take care of on-prem specific storage architecture

MetalK8s 1.x: Cluster Services
- “Stand on the shoulders of giants”
- Heapster for dashboard graphs, `kubectl top`,...
- metrics-server for HorizontalPodAutoscaler

- Looking into k8s-prometheus-adapter

- Ingress & TLS termination: nginx-ingress-controller
- Cluster monitoring & alerting: Prometheus, prometheus-operator, Alertmanager,

kube-prometheus, Grafana
- Host-based node_exporter on all servers comprising the cluster, including etcd

- Host & container logs: Elasticsearch, Curator, fluentd, fluent-bit, Kibana
- All of the above gives a great out-of-the-box experience for operators

INTERLUDE
Storage in a Kubernetes Cluster

Storage in Kubernetes
- Not tied to particular implementation

- File and block supported
- Local disks/file systems or attached SAN/NAS

- Data model
- StorageClass (SC): primarily used to configure on-demand provisioning
- PersistentVolume (PV): representation of an available volume
- PersistentVolumeClaim (PVC): binding between a Pod and a PV

- Classic on-demand provisioning:
- Create PVC for given SC
- Provisioner configured in SC creates backing storage and creates PV
- PVC bound to PV

- CSI plugins perform attach and mounting of volumes
- Currently many built-in, being split out of core

MetalK8s 1.x: Storage
- On-prem: no EBS, no GCP Persistent Disks, no Azure Storage Disk,...
- Also: can’t rely on NAS (e.g. through OpenStack Cinder) to be available
- Lowest common denominator: local disks in a node
- Decided to use static provisioning during installation

- Based on LVM2 Logical Volumes for flexibility
- PV, VG, LVs defined in inventory, created/formatted/mounted by playbook
- K8s PV objects created by playbook

Roadblocks and new requirements
- Based on years of years of experience deploying Scality RING at enterprise customers,

service providers,...
- Constraints in data centers often very different from ‘VMs on EC2’

- No direct internet access: everything through HTTP(S) proxy, no non-HTTP traffic
- Security rules requiring services to bind to specific IPs only, different subnets for control & workload,...
- Fully air gapped systems: requires 100% offline installation
- Non-standard OS/kernel
- Integration with corporate authn/authz systems
- Loosely captured in https://github.com/scality/metalk8s/blob/development/2.0/docs/requirements.rst

- Given reqs, decided continuing same path wouldn’t work
- However, useful lessons learned

https://github.com/scality/metalk8s/blob/development/2.0/docs/requirements.rst

Scality MetalK8s 2.x
Platform for next-gen products

MetalK8s: Shifting focus

- 1.x: general-purpose deployment tool, fulfil K8s cluster pre-req of $product

- 2.x: use-case specific component a vendor (you!) can embed in on-prem
solution/product running on K8s without being a K8s product

- More configurable to match exact solution requirements and deployment environment
- Tighten out-of-the-box security depending on application ‘insecurity’ needs

MetalK8s 2.x: Changed Architecture

Salt ‘master’
Kubernetes control-plane services

MetalK8s “platform”: cluster nodes

MetalK8s “services”: infra containers

Prometheus &
AlertManager

nginx Ingress UI Storage Operator

Application Containers

UI Operator

Zenko

Application Containers

UI Operator

Next-Gen Storage

Application Containers

UI Operator

...

etcd

...

Salt ‘minion’

MetalK8s 2.x: Changed Architecture
- Not built on Kubespray, built from scratch, isomorphic to kubeadm cluster
- No one-of playbooks, no ‘deploy-only’ clusters: focus on day 1/N operations
- Need a dynamic system:

- React to potential issues in cluster (e.g. prevent certificate TTL expiration)

- Need to act on system layer ‘from inside K8s’
- Cluster expansion
- Storage provision
- Cluster upgrade/downgrade

MetalK8s 2.x: Changed Architecture
- Using SaltStack

- Dynamic, ‘always-present’, lots of in-house experience

- Build everything into single ISO image
- Cluster deployment / lifecycle:

- Deploy ‘bootstrap’ node: mount ISO, create minimal config, run script
- Deployment kickstarts from Bash into Salt local mode, then master/minion mode ASAP
- Lays out Yum repository, container registry, Salt ‘master’ on bootstrap node, 1-node K8s cluster
- CRI: containerd, no Docker. Maybe cri-o someday
- CNI: Calico
- Once bootstrap deployed to fully-functional 1-node K8s cluster, add new nodes:

- Create Node object in K8s, set role labels and SSH info
- Trigger Salt to deploy server: orchestration uses SaltSSH for minion, then plain Salt
- Through API, CLI or UI
- Control-plane, infra, workload node, or mixture

- Cluster upgrade and downgrade fully automated, rolling

Interlude: static-container-registry
- Used to deploy full Docker Registry as part of MetalK8s
- Overkill: only need read-only distribution
- Overkill: requires ‘seeding’ the registry during deployment
- Overkill: storage consumption explosion

- Since no alternatives available, wrote something new: static-container-registry
- Given set of ‘exported’ container images, deduplicate layers (hardlink), then run script to

generate nginx config include snippet, and serve static files as-is, act as ‘good enough’
registry API

- Tested with Docker, containerd, cri-o, skopeo

https://github.com/NicolasT/static-container-registry/

https://github.com/NicolasT/static-container-registry/

MetalK8s 2.x: Changed Architecture
- Everything centered around Kubernetes

- Use K8s Nodes as ‘inventory’
- Use K8s Nodes as source-of-truth for server roles
- Deploy cluster services (Yum repo, registry,...) as K8s/kubelet-managed Pods: central view of cluster,

unified log management, metrics gathering,...
- Boils down to etcd cluster availability: backup and disaster-recovery tooling available

- Cluster management API: Kubernetes API + SaltAPI
- Integrated SaltAPI authn with K8s authn, i.e. can do OIDC
- Integrated SaltAPI authz with K8s RBAC, i.e. unified experience
- Allows SaltAPI access to MetalK8s services requiring this through ServiceAccounts

- Embrace K8s model: declare first in model, then realize: nodes, storage, applications,...

MetalK8s 2.x: Covering Enterprise Datacenter Needs
- 100% offline installation

- System packages
- Containers

- Networking
- Discern control-plane and workload-plane networks
- Control-plane HA either keepalived managed by MetalK8s, or external VIP/LB

- RHEL7 / CentOS7
- Ubuntu 18.04 LTS in progress for community purposes
- RHEL8 / CentOS8 support planned

- Integrate with enterprise authn/authz
- Custom cluster-management UI
- Focus on ‘real hardware’, not cloud VMs

- Integrated SMART disk monitoring, iLO server monitoring,...

MetalK8s 2.x: Storage Provisioning
- Still focus on local disk manipulation
- Pure LVM2 not sufficient due to application needs
- Embrace K8s model + Salt:

- Create Volume custom resource objects in K8s
- Controller / ‘operator’ acts on Volume CRUDs
- Every Volume has a StorageClass which defines FS, mkfs options, mount options,...
- Calls into SaltAPI to realize ‘physical’ volumes, or LVM LVs, or …

- Currently: rawBlockDevice and sparseLoopDevice
- Coming: configure RAID controllers, based on existing Scality Salt tooling, incl. RAID controller

management
- Once ‘physical’ volume created and formatted, create K8s PersistentVolume, expose to workloads

- Not using CSI

MetalK8s 2.x: Deploying Solutions
- K8s cluster not ‘end goal’, how to deploy actual product(s)?
- Main concept: operators

- A solution (e.g. Zenko) brings an operator that can deploy, manage, lifecycle solution instance(s)

- Solutions ship as ISO images containing container images and metadata
- Somewhat similar to CNAB ‘thick’ bundles

- ISOs ‘imported’ in cluster (on bootstrap node)
- Expose containers in registry
- Deploy operator & custom UI
- Create solution-specific StorageClasses

- Think of this as the application store of your cluster

MetalK8s 2.x: Deploying Solutions

- Solution instances created/deployed, upgraded, downgraded,... by user, automated by
operator

- Through K8s (extended) API, CLI, solution-specific UI

- Metrics captured by cluster-provided Prometheus, monitored by cluster-provided
AlertManager & Grafana

- Solution deployment includes custom dashboards and alerting rules

MetalK8s 2.x: Quickstart
- Install Vagrant and VirtualBox
- git clone --branch development/2.4 \

https://github.com/scality/metalk8s.git
- ./doit.sh vagrant_up

https://github.com/scality/metalk8s.git

MetalK8s 2.x: The road forward
- Integrate log aggregation
- Increase documentation coverage
- Extend UI
- Storage:

- Device discovery
- Integrate existing RAID-controller-fronted-disks automation in MetalK8s
- Considering using SNIA Swordfish for discovery and provisioning
- Support non-traditional device access (SPDK, CNS,...)

- Extended host/device/network monitoring
- Other CNIs (sriov, DPDK), Istio service-mesh, Jaeger tracing, OpenPolicyAgent,...
- Experimenting with built-in node netboot: PXE, boot-from-RAMdisk/livenet

SCALITY METALK8S
AN OPINIONATED KUBERNETES DISTRIBUTION

WITH A FOCUS ON LONG-TERM ON-PREM DEPLOYMENTS
https://github.com/scality/metalk8s

Nicolas Trangez - Senior Architect
nicolas.trangez@scality.com
@eikke | @scality | @zenko

https://github.com/Scality/metal-k8s

