19 September 23-26, 2019
Santa Clara, CA

MetalK8s

An opinionated Kubernetes distribution

optimized for data management

Nicolas Trangez
Senior Architect, Scality
@eikke | @scality | @zenko

<

3
V.

\

5

VAN

AV

N YN

VY

i

A

A

N/

\V/

NN B A))

N

AN

\

N —
NORCR //<\

NTNEN/7/ /N EN
7NN RVAVATATIIDNAR
O RV R

A\
ZNEN/N

VAT AN N AT AN AN AN A3 A7 I 5 L 5 A AT T

//\/\/\/\//W/////////

N7

ABOUT SCALITY

GLOBAL PRESENGE GLOBAL CLIENT BASE

. OPOLITAN O
orange [SUNRIE br paris 3 il

*-UROSPORT COM HEM

Vﬂq % 9 dailymotion 97 naTixis olotoy,

O E= A

SVﬂIHEIWV

9 e RENAULT (%CE)SIEERTE LE AIRBUS
» DA
Penn Medicine ~
Bank of America
0 I: I: I c B|°omber / EndemolShine

+ Media COMCAST Group
STAPLES logitech f “’:eldia'*”b
(0) 4[]
HB® (@ rackspace 'I
2 0 + BIGL@BE

DMM .com @nifty
PEOPLE
NATIONALITIES £33 SCALITY

OUR JOURNEY TO KUBERNETES

Scality RING, S3 Connector & Zenko

Scality RING

On-premise
Distributed Object & File Storage

Physical servers, some VMs

Only the OS available (incl. ‘legacy’
like CentOS 6)

Static resource pools

Static server roles / configurations
Solution distributed as RPM
packages, deployed using
SaltStack

De-facto taking ownership of host,
difficult to run multiple instances
Fairly static post-install

¢ SCALITY

Scality $3
Connector

On-premise S3-compatible Object
Storage

Physical servers, sometimes VMs
Static resource pools
“Microservices” architecture
Solution distributed as Docker
container images, deployed using
Ansible playbooks

No runtime orchestration

Log management, monitoring,...
comes with solution

¢ SCALITY

Scality Zenko

Multi-Cloud Data Controller

Deployed on-prem or ‘in the Cloud':
major paradigm shift

New challenges, new opportunities
Multi-Cloud Data Controller, must
run on multiple Cloud platforms
See Vianney's talk!

¢ SCALITY

- Embraced containers as
distribution mechanism

sca I itv Ze “ ko - Some shared with Scality S3 Connector

- Decided to move to Kubernetes
Managed platforms for Cloud
deployments, where available (GKE,
AKS, EKS,...)

On-prem clusters

Deployment Model

¢ SCALITY

Scality Zenko

Kubernetes Benefits

Homogenous deployment between
in-cloud and on-prem
Various services provided by

cluster:
Networking & policies
Service restart, rolling upgrades
Service log capturing & storage
Service monitoring & metering
Load-balancing
TLS termination

Flexible resource management

If needed, easily add resources to
cluster by adding some (VM) nodes
HorizontalPodAutoscaler

¢ SCALITY

Scality Zenko

Kubernetes Deployment

Currently using Helm chart
Contributed many fixes and
features to upstream charts
repository

Contributed new charts and
became maintainer of some others
Next-gen: Zenko ‘operator’

Can run in your cluster
(https://github.com/Scality/Zenko)
or test-drive a hosted instance for
free using Zenko Orbit at
https://zenko.io/admin

¢ SCALITY

https://github.com/Scality/Zenko
https://zenko.io/admin

INTERLUDE

What is Kubernetes?

Kubernetes

“Container orchestration system”
Actually:

Extensible model of ‘desired reality’ in a distributed database, accessible through RESTful APIs
Authn / authz

Controllers to refine high-level object(s) into lower-level ones and/or reconcile reality with model
Service(s) running on machines to realize desired reality at system level

Set of APIs/plugins to interact with system: CRI, CNI, CSl

In essence, ‘containers’ are only a small part of the K8s architecture

Core unit of scheduling: Pod
Set of containers running in single network namespace
Pods can request attachment to persistent storage volumes

¢33 SCALITY

OUR JOURNEY TO KUBERNETES

MetalK8s

On-prem Kubernetes

Can't expect a Kubernetes cluster to be available, provided by Scality customer
Looked into various existing offerings, but in the ends needs to be supported
by/through Scality (single offering)

Also, many existing solutions don't cover enterprise datacenter requirements
Decided to roll our own

¢%3 SCALITY

SCALITY [l METALK8S

AN OPINIONATED KUBERNETES DISTRIBUTION
WITH A FOCUS ON LONG-TERM ON-PREM DEPLOYMENTS

OPINIONATED

We offer an out-of-the-box experience, no non-trivial
choices to be made by users

LONG-TERM

Storage is mission-critical and sticky, can’t spawn a new
cluster to upgrade and use a load-balancer in front

¢%3 SCALITY

ON-PREM

Can’t expect anything to be available but (physical)
servers with a base 0S

¢%3 SCALITY

MetalK8s 1.x

Scope: 3-20 physical machine, pre-provisioned by customer or partner
Built on top of the Kubespray Ansible playbook
Use Kubespray to lay out a base Kubernetes cluster

Also: etcd, CNI

Add static & dynamic inventory validation pre-checks, OS tuning, OS security
Based on experience from large-scale Scality RING deployments

Augment with various services, deployed using Helm
Operations

Ingress
Cluster services

Take care of on-prem specific storage architecture

¢33 SCALITY

MetalK8s 1.x: Cluster Services

“Stand on the shoulders of giants”
Heapster for dashboard graphs, "kubectl top’,...

metrics-server for HorizontalPodAutoscaler
Looking into k8s-prometheus-adapter

Ingress & TLS termination: nginx-ingress-controller
Cluster monitoring & alerting: Prometheus, prometheus-operator, Alertmanager,

kube-prometheus, Grafana
Host-based node_exporter on all servers comprising the cluster, including etcd

Host & container logs: Elasticsearch, Curator, fluentd, fluent-bit, Kibana
All of the above gives a great out-of-the-box experience for operators

¢%3 SCALITY

kubernetes

Q Search

+CREATE | @

Cluster
Namespaces
Nodes
Persistent Volumes
Roles

Storage Classes

Namespace

zenko ~

Overview

Workloads
Cron Jobs
Daemon Sets
Deployments
Jobs
Pods
Replica Sets
Replication Controllers

Stateful Sets
Discovery and Load Balancing

Ingresses

Services
Config and Storage

Config Maps
Persistent Volume Claims

Secrets

Settings

CPU usage Memory usage
0.292 6.29 Gi
0.260 _559Gil
7]
€ o195 £419Gi
o =
& ;
S 0130 £279Gi
& £ .
0.065 2 1406Gi
1346 11:50 11:53 11:56 12:00 1346 11:48 11:50 11:51 11:53 11:55 11:56 11:58 12:00
Time Time
Workloads
Workloads Statuses
Deployments Pods Replica Sets Stateful Sets
Deployments =
Name Labels Pods Age * Images
app: backbeat-consumer
° zenko1-backbeat-consumer chart: backbeat-consumer-0.1.0 1/1 2 days zenko/backbeat:0.1.4 :
heritage: Tiller release: zenko1
app: backbeat-producer
° zenko1-backbeat-producer chart: backbeat-producer-0.1.0 heritage: Tiller b2 | 2 days zenko/backbeat:0.1.4 :
release: zenko1
app: cloudserver-front
chart: cloudserver-front-0.1.3 heritage: Tiller 111 2 days zenko/cloudserver:0.1.6 :

° zenko1-cloudserver-front
release: zenko1

4,743 hits New Save Open Share CAuto-refresh ¢ @ Last15minutes

‘ klbana ‘[bea(ch .. (e.g. status:200 AND extension:PHP) Uses lucene query syntax ‘n
@ Discover kubernetes.label: Add a filter 4 Actions »
"_l Visualize logstash-* March 26th 2018, 11:47:57.351 - March 26th 2018, 12:02:57.351 — Auto v

Dashboard Selected Fields

t kubernetes.host

B _iiiiinsaieninls

Count

%+ @ O

Popular @timestamp per 30 seconds
t kubernetes.container_name
© atmesap Time kubernetes.labels.app kubernetes.host log
i
g » March 26th 2018, 12:02:53.930 mongodb-replicaset metalk8s5-03 2018-03-26T19:02:53.930+0000 I - [conn22297] end connection 127.6.0.1:58200 (15 connections now open)
t i
t _index » March 26th 2018, 12:02:53.928 mongodb-replicaset metalk8s5-03 2018-03-26T19:02:53.928+0000 I NETWORK [threadl] connection accepted from 127.6.0.1:58200 #22297 (15
- connections now open)
_score
» March 26th 2018, 12:02:53.928 mongodb-replicaset metalk8s5-03 2018-03-26T19:02:53.928+0000 I NETWORK [conn22297] received client metadata from 127.0.6.1:58200 conn22297: {
t _type application: { name: "MongoDB Shell” }, driver: { name: "MongoDB Internal Client", version: "3.4.14" }, os: {
type: "Linux", name: "PRETTY_NAME="Debian GNU/Linux 8 (jessie)"", architecture: "x86_64", version:
? address 4.4.0-116-generic” } }
2 clientlP » March 26th 2018, 12:02:53.280 mongodb-replicaset metalk8s5-04 2018-03-26T19:02:53.280+0000 I - [conn20573] end connection 127.6.0.1:41600 (13 connections now open)
? clientPort .
Sl » March 26th 2018, 12:02:53.278 mongodb-replicaset metalk8s5-04 2018-03-26T19:02:53.277+0000 I NETWORK [conn20573] received client metadata from 127.0.0.1:41600 conn20573: {
2 configurationVersion application: { name: "MongoDB Shell" }, driver: { name: "MongoDB Internal Client", version: "3.4.14" }, os: {
: type: "Linux", name: "PRETTY_NAME="Debian GNU/Linux 8 (jessie)"", architecture: "x86_64", version: "Kernel
t docker.container_id 4.4.0-116-generic” } }
2 error.address » March 26th 2018, 12:02:53.277 mongodb-replicaset metalk8s5-04 2018-03-26T19:02:53.277+0000 I NETWORK [threadl] connection accepted from 127.0.0.1:41600 #20573 (13
connections now open)
? error.code
» March 26th 2018, 12:02:50.643 mongodb-replicaset metalk8s5-04 2018-03-26T19:02:50.643+0000 I - [conn20572] end connection 127.0.6.1:41594 (13 connections now open)
? error.errno
2 » March 26th 2018, 12:02:56.638 mongodb-replicaset metalk8s5-04 2018-03-26T19:02:50.638+0000 I NETWORK [conn20572] received client metadata from 127.0.0.1:41594 conn20572: {
R DO application: { name: "MongoDB Shell” }, driver: { name: "MongoDB Internal Client", version: "3.4.14" }, os: {
o 1 type: "Linux", name: "PRETTY_ NAME="Debian GNU/Linux 8 (jessie)"", architecture: "x86 64", version: "Kernel
? error.syscal 4.4.0-116-generic” } }
? hostname
» March 26th 2018, 12:02:50.638 mongodb-replicaset metalk8s5-04 2018-63-26T19:02:50.638+0000 I NETWORK [threadl] connection accepted from 127.0.0.1:41594 #20572 (13
? httpMethod connections now open)
? httpURL » March 26th 2018, 12:02:50.521 mongodb-replicaset metalk8s5-01 2018-03-26T19:02:50.521+0000 I - [conn21254] end connection 127.6.0.1:45634 (9 connections now open)
2 https » March 26th 2018, 12:02:50.518 mongodb-replicaset metalk8s5-01 2018-03-26T19:02:50.517+0000 I NETWORK [conn21254] received client metadata from 127.0.0.1:45634 conn21254: {
application: { name: "MongoDB Shell" }, driver: { name: "MongoDB Internal Client", version: "3.4.14" }, os: {
t kubernetes.labels.chart type: "Linux", name: "PRETTY_NAME="Debian GNU/Linux 8 (jessie)"", architecture: "x86 64", version: "Kernel
4.4.0-116-generic” } }
© collapse t kubernetes.labels.controller-revisio...

)

88 Nodes - 2 ¢ @ > Otastihouwr &
server 10.100.2.227:9100 v
Idle CPU System Load
100% 150.00%
75%
-3
8 50%
3
2
g
25%
o T e e e R
11:08 11:10 11:15 11:20 11:25 11:30 11:35 11:40 11:45 11:50 11:55 12:00 11:08 11:10 1:15 11:20 11:25 11:30 11:35 11:40 11:45 11:50 11:55 12:00
= CPUD = CPUT = CU2 == CPU3 = 10ad 1M == load 5Sm == load 15m
Memory Usage Memory Usage

9GiB
76iB
66iB
4GiB
26iB o

s 29 A)

11:05 11:10 11115 11:20 1125 11:30 1135 11:40 11:45 11:50 11:55 12:00
== memory used == memory buffers == memory cached == memory free
Disk 1/0 Disk Space Usage
24MiB 100 ms
1.9MiB \ &\ 80ms
1.4MiB —— ——— _— ~ —_— 60ms
_— S e
977 KiB 40ms
488 KiB = 20ms o
s e 40 . 1 A)
11:05 11:10 11:15 11:20 1125 11:30 11:35 11:40 11:45 11:50 11:55 12:00
= read == written - i0 time
Network Received Network Transmitted
98 KiB 68 KiB.
e 59 KiB =
78KiB ==
49KiB

59 KiB [0 ViR P =

INTERLUDE

Storage in a Kubernetes Cluster

£8) SCALITY

Storage in Kubernetes

Not tied to particular implementation
File and block supported
Local disks/file systems or attached SAN/NAS
Data model
StorageClass (SC): primarily used to configure on-demand provisioning
PersistentVolume (PV): representation of an available volume
PersistentVolumeClaim (PVC): binding between a Pod and a PV
Classic on-demand provisioning:
Create PVC for given SC
Provisioner configured in SC creates backing storage and creates PV
PVC bound to PV
CSI plugins perform attach and mounting of volumes
Currently many built-in, being split out of core

¢%3 SCALITY

MetalK8s 1.x: Storage

- On-prem: no EBS, no GCP Persistent Disks, no Azure Storage Disk,...
- Also: can't rely on NAS (e.g. through OpenStack Cinder) to be available
- Lowest common denominator: local disks in a node

- Decided to use static provisioning during installation
Based on LVM2 Logical Volumes for flexibility

PV, VG, LVs defined in inventory, created/formatted/mounted by playbook
K8s PV objects created by playbook

¢%3 SCALITY

Roadblocks and new requirements

- Based on years of years of experience deploying Scality RING at enterprise customers,
service providers,...

- Constraints in data centers often very different from ‘VMs on EC2’
No direct internet access: everything through HTTP(S) proxy, no non-HTTP traffic
Security rules requiring services to bind to specific IPs only, different subnets for control & workload,...
Fully air gapped systems: requires 100% offline installation
Non-standard 0S/kernel
Integration with corporate authn/authz systems
Loosely captured in https://github.com/scality/metalk8s/blob/development/2.0/docs/requirements.rst

- Given reqs, decided continuing same path wouldn't work
However, useful lessons learned

¢%3 SCALITY

https://github.com/scality/metalk8s/blob/development/2.0/docs/requirements.rst

Scality MetalK8s 2.x

Platform for next-gen products

MetalK8s: Shifting focus

1.x: general-purpose deployment tool, fulfil K8s cluster pre-req of Sproduct

2.x: use-case specific component a vendor (you!) can embed in on-prem

solution/product running on K8s without being a K8s product

More configurable to match exact solution requirements and deployment environment
Tighten out-of-the-box security depending on application ‘insecurity’ needs

¢%3 SCALITY

MetalK8s 2.x: Changed Architecture

Application Containers

Application Containers

Operator

Prometheus &
AlertManager

nginx Ingress

Ul

Storage Operator

MetalK8s “services”: infra containers

Salt ‘master’

Salt ‘minion’

etcd

Kubernetes control-plane services

MetalK8s “platform”: cluster nodes

Application Containers

¢%3 SCALITY

MetalK8s 2.x: Changed Architecture

- Not built on Kubespray, built from scratch, isomorphic to kubeadm cluster
- No one-of playbooks, no ‘deploy-only’ clusters: focus on day 1/N operations
- Need a dynamic system:

React to potential issues in cluster (e.g. prevent certificate TTL expiration)

- Need to act on system layer ‘from inside K8s'
Cluster expansion
Storage provision
Cluster upgrade/downgrade

¢%3 SCALITY

MetalK8s 2.x: Changed Architecture

Using SaltStack

Dynamic, ‘always-present’, lots of in-house experience

Build everything into single ISO image
Cluster deployment / lifecycle:

Deploy ‘bootstrap’ node: mount ISO, create minimal config, run script
Deployment kickstarts from Bash into Salt local mode, then master/minion mode ASAP
Lays out Yum repository, container registry, Salt ‘master’ on bootstrap node, 1-node K8s cluster
CRI: containerd, no Docker. Maybe cri-o someday
CNI: Calico
Once bootstrap deployed to fully-functional 1-node K8s cluster, add new nodes:
Create Node object in K8s, set role labels and SSH info
Trigger Salt to deploy server: orchestration uses SaltSSH for minion, then plain Salt
Through API, CLI or Ul
Control-plane, infra, workload node, or mixture
Cluster upgrade and downgrade fully automated, rolling ¢%3 SCALITY

Interlude: static-container-registry

Used to deploy full Docker Registry as part of MetalK8s
Overkill: only need read-only distribution

Overkill: requires ‘seeding’ the registry during deployment
Overkill: storage consumption explosion

Since no alternatives available, wrote something new: static-container-registry

Given set of ‘exported’ container images, deduplicate layers (hardlink), then run script to
generate nginx config include snippet, and serve static files as-is, act as ‘good enough’
registry API

Tested with Docker, containerd, cri-o, skopeo

https://github.com/NicolasT/static-container-reqistry/

¢%3 SCALITY

https://github.com/NicolasT/static-container-registry/

MetalK8s 2.x: Changed Architecture

- Everything centered around Kubernetes

Use K8s Nodes as ‘inventory’

Use K8s Nodes as source-of-truth for server roles

Deploy cluster services (Yum repo, registry,...) as K8s/kubelet-managed Pods: central view of cluster,
unified log management, metrics gathering,...

Boils down to etcd cluster availability: backup and disaster-recovery tooling available

- Cluster management API: Kubernetes API + SaltAPI

Integrated SaltAPI authn with K8s authn, i.e. can do OIDC
Integrated SaltAPI authz with K8s RBAC, i.e. unified experience
Allows SaltAPI access to MetalK8s services requiring this through ServiceAccounts

- Embrace K8s model: declare first in model, then realize: nodes, storage, applications,...

¢%3 SCALITY

MetalK8s 2.x: Covering Enterprise Datacenter Needs

100% offline installation

System packages
Containers

- Networking
Discern control-plane and workload-plane networks
Control-plane HA either keepalived managed by MetalK8s, or external VIP/LB

- RHEL7 / Cent0S/

Ubuntu 18.04 LTS in progress for community purposes
RHEL8 / Cent0S8 support planned

- Integrate with enterprise authn/authz
- Custom cluster-management Ul

- Focus on ‘real hardware’, not cloud VMs
Integrated SMART disk monitoring, iLO server monitoring,...

¢%3 SCALITY

+y SCALITY METALK8S PLATFORM

=+ Create a New Node

a

Name < Status + Deployment = Roles < MetalK8s Version <

bootstrap Ready Bootstrap 2.4.0-dev

+y SCALITY METALK8S PLATFORM

;] Monitoring

Nodes

New Node Data

Name

MetalK8s Version 2.4.0-dev

Roles Workload Plane
Control Plane

Infra

New Node Access

SSH User

Hostname or IP

SSH Port |2

SSH Key Path ‘ [etc/metalk8s/pki/salt-bootstraj ‘

Sudo Required

MetalK8s 2.x: Storage Provisioning

- Still focus on local disk manipulation
- Pure LVM2 not sufficient due to application needs

- Embrace K8s model + Salt:

Create Volume custom resource objects in K8s

Controller / ‘operator’ acts on Volume CRUDs

Every Volume has a StorageClass which defines FS, mkfs options, mount options,...

Calls into SaltAPI to realize ‘physical’ volumes, or LVM LVs, or ...
Currently: rawBlockDevice and sparseLoopDevice
Coming: configure RAID controllers, based on existing Scality Salt tooling, incl. RAID controller
management

Once ‘physical’ volume created and formatted, create K8s PersistentVolume, expose to workloads

- Not using CSI

¢%3 SCALITY

+y SCALITY METALK8S PLATFORM

Nodes

Details

Q Search

Name < Status + Storage Capacity < Storage Class + Creation Time <

bootstrap-alertmanager ~ Available 1Gi metalk8s-prometheus 9/23/2019 11:26:00 AM |]

10Gi metalk8s-prometheus 9/23/2019 11:26:00 AM o

bootstrap-prometheus Available

+y SCALITY METALK8S PLATFORM

Nodes bootstrap

Detailed Information

Name bootstrap-prometheus
Status Available

Size 10Gi

Type sparseLoopDevice
Bound Yes

Storage Class metalk8s-prometheus
Path Not applicable

Access Mode ReadWriteOnce

Mount Options rw, discard

Creation Time 9/23/2019 11:26:00 AM

Q icolas@beta:~/Projects/metalks B~ = x

[root@bootstrap ~]# kubectl get volumes

NAME NODE STORAGECLASS
bootstrap-alertmanager bootstrap metalk8s-prometheus
bootstrap-prometheus bootstrap metalk8s-prometheus

[root@bootstrap ~]# kubectl get volume bootstrap-prometheus -o yaml
apiVersion: storage.metalk8s.scality.com/vlalphal
kind: Volume
metadata:
annotations:
kubectl.kubernetes.io/last-applied-configuration: |
{"apiVersion":"storage.metalk8s.scality.com/vlalphal”, "kind":"Volume", "metadata":{"annotations":{}, "name":"bootstrap-prometheus"}, "spec":{"nodeName": "bootstrap”, "spars
eLoopDevice":{"size":"10Gi"}, "storageClassName": "metalk8s-prometheus”, "template":{"metadata":{"labels":{"app.kubernetes.io/name": "prometheus-operator-prometheus"}}}}}
creationTimestamp: "2019-09-23T18:26:00Z"
finalizers:
- storage.metalk8s.scality.com/volume-protection
generation: 2
name: bootstrap-prometheus
resourceVersion: "1216"
selflLink: /apis/storage.metalk8s.scality.com/vlalphal/volumes/bootstrap-prometheus
uid: cle71f60-9d3a-4ca5-bdc4-1812eb29721b
spec:
nodeName: bootstrap
sparselLoopDevice:
size: 10Gi
storageClassName: metalk8s-prometheus
template:
metadata:
creationTimestamp: null
labels:
app.kubernetes.io/name: prometheus-operator-prometheus
spec: {}
status:
phase: Available
[root@bootstrap ~]# I

P 1°Z) ssh t 6h 21m 23s < 2.0 2.2 2.2 ([2019-09-23 ¢ 23:32 (SN

~&"

Q

[root@bootstrap ~]# kubectl describe pv bootstrap-prometheus

Name:

Labels:
Annotations:
Finalizers:
StorageClass:
Status:

Claim:

Reclaim Policy:
Access Modes:
VolumeMode:
Capacity:

Node Affinity:

Required Terms:

Term O:
Message:
Source:

Type:

Path:
Events:

bootstrap-prometheus

app.kubernetes.io/name=prometheus-operator-prometheus
pv.kubernetes.io/bound-by-controller: yes
[storage.metalk8s.scality.com/volume-protection kubernetes.io/pv-protection]
metalk8s-prometheus

Bound
metalk8s-monitoring/prometheus-prometheus-operator-prometheus-db-prometheus-prometheus-operator-prometheus-0
Retain

RWO

Filesystem

1061

kubernetes.io/hostname in [bootstrap]

LocalVolume (a persistent volume backed by local storage on a node)
/dev/disk/by-uuid/cle71f60-9d3a-4ca5-bdc4-1812eb29721b
<none>

[root@bootstrap ~]1#]

t 6h 27m 26s < 2.1 2.1 2.1 | 2019-09-23 ¢ 23:38 {IIXTHHHOEAT

~3

@ 88 Kubernetes / Persistent Volumes - 7w @ # G Olstaomnutes Q <&

datasource Prometheus ¥ Namespace metalk8s-monitoring ¥ PersistentVolumeClaim prometheus-prometheus-operator-prometheus-db-prometheus-prometheus-operator-prometheus-0 v
Volume Space Usage Volume Space Usage

4] 14 GiB
9 9GiB
‘ 5GiB

0B
* 16:06 16:08 16:10 16:12 16:14 16:16 16:18 16:20 16:22 16:24 16:26 16:28 16:30 16:32 16:34

min max avg current 3 o/o

@ - Used Space 243 MiB 262 MiB 254 MiB ’

== Free Space 9.46 GiB 9.48 GiB 9.47 GiB

Volume inodes Usage Volume inodes Usage

800000

600000

400000

200000

16:06 16:08 16:10 16:12 16:14 16:16 16:18 16:20 16:22 16:24 16:26 16:28 16:30 16:32 16:34

mn max v ourem .0046%

== Used inodes 30 30 30

== Free inodes 655330 655330 655330

Disk Temperature ~

&
—

I

- /dev/sda 300
- /dev/sdb 300
- /dev/sdc 280
- /dev/sdd 270

20 J =
1
| .ii‘ I |‘3 2019-01-26 12:40:00 — /devisde 290
U & I il e -~ A
29 /dev/sda: 31.0 =" /clav/adt 280
= /dev/sdb: 31.0
28 = /dev/sdc: 29.0
= /dev/sdd: 28.0
27 = /dev/sde: 30.0
= /dev/sdf: 29.0
1/2512:00 1/25 16:00 1/25 20:00 1/26 00:00 1/26 04:00 1/26 08:00 1/26 12:00 1/26 16:00 1/26 20:00 1/27 00:00 1/27 04:00 1/27 08:00 1/27 12:00 1/27 16:00 1/27 20:00 1/28 00:00 1/28 04:00 1/28 08:00
‘» Raw Read Error Rate w Reallocated Event Count
4 min max avg current E
- /dev/sda 0 0 0 0 - /dev/sda
- /dev/sdb 0 0 0 0 - /dev/sdb
- /dev/sdc 0 0 0 0 - /dev/sdc
- /dev/sdd o 0 o 0 - /dev/sdd
- /dev/sde 0 0 0 0 = /dev/sde
- /dev/sdf 0 0 o 0 e /dev/sdf
0 0 =&
1/25 12:00 1/26 00:00 1/26 12:00 1/27 00:00 1/27 12:00 1/28 00:00 J 1/2512:00 1/26 00:00 1/26 12:00 1/27 00:00 1/27 12:00 1/28 00:00
w Reallocated Sector Ct ‘w UDMA CRC Error Count
1 min max avg current -
- /dev/sda 0 0 0 0 - /dev/sda
- /dev/sdb 0 0 0 0 - /dev/sdb
- /dev/sdc 0 0 0 0 - /dev/sdc
- /dev/sdd 0 0 0 0 - /dev/sdd
= [dev/sde 0 0 0 0 = /dev/sde
e /dev/sdf 0 0 0 o we /dev/sdf
[0
1/25 12:00 1/26 00:00 1/26 12:00 1/27 00:00 1/27 12:00 1/28 00:00 1/2512:00 1/26 00:00 1/26 12:00 1/27 00:00 1/27 12:00 1/28 00:00

max avg
320 311
320 311
310 294
290 281
310 299
300 293
min max avg
0 0 0
0 0 0
0 0 0
0 o 0
0 o 0
0 o 0
min max avg
0 0 0
0 0 0
0 o 0
0 o o
0 0 0
0 0 0

¢33 SCALITY

current
320
310
300
29.0
310
300

eceooog

oeeceog

+y SCALITY METALK8S PLATFORM

Monitoring
bootstrap

Name

Storage Class | metalk8s-prometheus ~

Type 3 SparseLoopDevice v

Volume Capacity : ‘GiB -

MetalK8s 2.x: Deploying Solutions

- K8s cluster not ‘end goal’, how to deploy actual product(s)?
- Main concept: operators
A solution (e.g. Zenko) brings an operator that can deploy, manage, lifecycle solution instance(s)
- Solutions ship as ISO images containing container images and metadata
Somewhat similar to CNAB ‘thick’ bundles

- 1SOs ‘imported’ in cluster (on bootstrap node)
Expose containers in registry
Deploy operator & custom Ul
Create solution-specific StorageClasses

- Think of this as the application store of your cluster

¢%3 SCALITY

MetalK8s 2.x: Deploying Solutions

- Solution instances created/deployed, upgraded, downgraded,... by user, automated by

operator
Through K8s (extended) API, CLI, solution-specific Ul

- Metrics captured by cluster-provided Prometheus, monitored by cluster-provided
AlertManager & Grafana

Solution deployment includes custom dashboards and alerting rules

¢%3 SCALITY

MetalK8s 2.x: Quickstart

Install Vagrant and VirtualBox
- git clone --branch development/2.4 \
https://github.com/scality/metalk8s.git
- ./doit.sh vagrant up

¢%3 SCALITY

https://github.com/scality/metalk8s.git

MetalK8s 2.x: The road forward

- Integrate log aggregation
- Increase documentation coverage
- Extend Ul
- Storage:
- Device discovery
Integrate existing RAID-controller-fronted-disks automation in MetalK8s

Considering using SNIA Swordfish for discovery and provisioning
Support non-traditional device access (SPDK, CNS,...)

- Extended host/device/network monitoring
- Other CNIs (sriov, DPDK), Istio service-mesh, Jaeger tracing, OpenPolicyAgent,...
- Experimenting with built-in node netboot: PXE, boot-from-RAMdisk/livenet

¢%3 SCALITY

SCALITY [l METALK8S

AN OPINIONATED KUBERNETES DISTRIBUTION
WITH A FOCUS ON LONG-TERM ON-PREM DEPLOYMENTS

https://github.com/scality/metalk8s

Nicolas Trangez - Senior Architect
nicolas.trangez@scality.com
@eikke | @scality | @zenko

https://github.com/Scality/metal-k8s

