
2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 1

Persistent Memory Programming
Made Easy with pmemkv

Andy Rudoff
Intel Corporation

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 2

Agenda

 Why pmemkv?
 pmemkv Design
 Engines
 Language bindings
 Performance

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 3

Why pmemkv?

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 4

Ways to Use Persistent Memory

 Memory Mode
 Transparent to application
 Transparent to OS
 Volatile
 …but not a match for every use case

 As Storage…

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 5

The SNIA NVM Programming Model

Persistent Memory

user space
kernel space

Standard
File API

Generic NVDIMM Driver

Application

File System

ApplicationApplication

Standard
Raw Device

Access

Load/
Store

Management Library

Management UI

Standard
File API

pmem-Aware
File System

MMU
Mappings

file memory

“DAX”

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 6

With Great Direct Access Comes
Great Responsibility

DAX mapped file?
(OS provides info)

CPU caches
considered persistent?

(ACPI provides info)

CLWB?
(CPU_ID provides info)

CLFLUSHOPT?
(CPU_ID provides info)

Program Initialization

Use standard API for flushing
(msync/fsync or FlushFileBuffers)

Use CLFLUSH for flushing Use CLFLUSHOPT+SFENCE
for flushing

Use CLWB+SFENCE
for flushing

Stores considered persistent
when globally-visible

no yes

yes

yes

yes

no

no

no

Dirty Shutdown?

Known Poison Blocks

Program Initialization

Data set is potentially inconsistent.
Recover.

Repair data set Normal Operation

yes no

noyes

Flushing… RAS…

open(…);

mmap(…);

strcpy(pmem, "Hello, World!");

msync(…); Crash

Consistency…

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 7

PMDK
“make pmem programming easier”

Support for
volatile

memory usage

Low level support for
local persistent memory

libpmem

Low level support for
remote access to

persistent memory

librpmem

In Development

NVDIMM

User
Space

Kernel
Space

Application
Load/Store

Standard
File API

pmem-Aware
File System

MMU
Mappings

PMDK

Interface to create arrays of
pmem-resident blocks, of same

size, atomically updated

Interface for persistent memory
allocation, transactions and general

facilities

Interface to create a
persistent memory resident

log file

libpmemblklibpmemlog libpmemobj

Transaction
Support

C++ C
PCJ/
LLPL Python

Low-level support

PCJ – Persistent Collection for
Java

memkind

vmemcache

C C+
+ Java JS Ruby

pmemkv

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 8

libpmemobj Performance Across Versions
B-tree Benchmark

100.00%

167.49%

199.07%

377.12%

351.09%

511.33%

510.59%

549.66%

1 .0 1 .1 1 .2 1 .3 1 .4 1 .5 1 .6 1 .7

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 9

Why pmemkv?
 We have Memory Mode and Storage
 for legacy use cases

 We have libpmem
 for raw access

 We have libpmemobj
 For transactions, allocation, containers

 How about a simple put/get API!
 Tuned and validated to product quality

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 10

Why pmemkv?
• Key-value store can take advantage of access-in-place

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 11

pmemkv design

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 12

pmemkv design goals

Technical:

• Local key/value store (no networking)
• Idiomatic language bindings
• Simple, familiar, bulletproof API
• Easily extended with new engines
• Optimized for persistent memory

(limit copying to/from DRAM)
• Flexible configuration, not limited to a single

storage algorithm
• Generic tests

Community:

• Open source, developed in the open and
friendly licensing
• https://github.com/pmem/pmemkv

• Outside contributions are welcome
• Intel provides stewardship, validation on real

hardware, and code reviews
• Standard/comparable benchmarks

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 13

pmemkv architecture

P
M

D
K

libpmemobj

libpmemobj++

pmemkv core (C++)

C API

C++ API (header
only)

pm
em

kv

C++
applications

NAPI

Node.js
bindings

JNI

Java
bindings

FFI

Ruby
bindings

C
applications

Ruby
applications

Java
applications

JavaScript
applications

memkind TBB
pmemkv
“native”
engines

bi
nd

in
gs

applications

pluggable engines

• pmemkv core is a frontend for engines
• Core implementation written in C++,

not related to Persistent Memory
• Pluggable engines

• Some engines are implemented in
pmemkv, some engines are imported
from external projects

• Persistent engines are implemented
with libpmemobj (PMDK)

• Native API for pmemkv is written C/C++
• pmemkv design allows for easy

integration with high-level language
bindings

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 14

pmemkv configuration

• Flexible configuration API
• Works with different kinds of engines

• Every engine has documented supported config
parameters individually

• Unordered map
• Takes name configuration value as a k-v pair

• Supported configuration types:
• int64/uint64/double
• string
• Arbitrary data (pointer and size)

• Resides on stack
• Takes optional destructor as an additional

parameter if custom configuration parameter
allocates memory

config cfg;

status s = cfg.put_string("path", path);
assert(s == status::OK);

s = cfg.put_uint64("size", SIZE);
assert(s == status::OK);

s = cfg.put_uint64("force_create", 1);
assert(s == status::OK);

Typical config structure example for libpmemobj-based engines

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 15

Persistent MemoryDRAM

pmemkv design

Application start

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 16

Persistent MemoryDRAM

config cfg;

status s =
cfg.put_string("path", "/daxfs/file");

assert(s == status::OK);

s = cfg.put_uint64("size", SIZE);
assert(s == status::OK);

pmemkv design

config structure, resides
on stack

cfg

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 17

Persistent MemoryDRAM

config cfg;

status s =
cfg.put_string("path", "/daxfs/file");

assert(s == status::OK);

s = cfg.put_uint64("size", SIZE);
assert(s == status::OK);

db *kv = new db();

pmemkv design

db object – volatile
object for managing

engine

cfg

kv

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 18

Persistent MemoryDRAM

config cfg;

status s =
cfg.put_string("path", "/daxfs/file");

assert(s == status::OK);

s = cfg.put_uint64("size", SIZE);
assert(s == status::OK);

db *kv = new db();

if (kv->open("cmap", cfg) != status::OK) {
std::cerr << db::errormsg() << std::endl;
return 1;

}

/daxfs/file

cmap

k v

pmemkv design

kv.open()
- creates/opens persistent memory pool

- checks consistency and perform recovery
- takes ownership for cfg structure

kv

cfg

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 19

Persistent MemoryDRAM

config cfg;

status s =
cfg.put_string("path", "/daxfs/file");

assert(s == status::OK);

s = cfg.put_uint64("size", SIZE);
assert(s == status::OK);

db *kv = new db();

if (kv->open("cmap", cfg) != status::OK) {
std::cerr << db::errormsg() << std::endl;
return 1;

}

// do work here

/daxfs/file

cmap

k v

pmemkv design

kv

cfg

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 20

Persistent MemoryDRAM

config cfg;

status s =
cfg.put_string("path", "/daxfs/file");

assert(s == status::OK);

s = cfg.put_uint64("size", SIZE);
assert(s == status::OK);

db *kv = new db();

if (kv->open("cmap", cfg) != status::OK) {
std::cerr << db::errormsg() << std::endl;
return 1;

}

// do work here

kv->close();

/daxfs/file

cmap

k v

pmemkv design

kv

cfg

kv.close()
- close database connection

- Persistent Memory data remain saved

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 21

Persistent MemoryDRAM

config cfg;

status s =
cfg.put_string("path", "/daxfs/file");

assert(s == status::OK);

s = cfg.put_uint64("size", SIZE);
assert(s == status::OK);

db *kv = new db();

if (kv->open("cmap", cfg) != status::OK) {
std::cerr << db::errormsg() << std::endl;
return 1;

}

// do work here

kv->close();

delete kv;

/daxfs/file

cmap

k v

Safe deletion of volatile data

pmemkv design

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 22

Engines

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 23

Engines
Engine Name Description Experimental? Persistent? Concurrent? Sorted?

blackhole Accepts everything, returns nothing No - - -

cmap Concurrent hash map No Yes Yes No

vsmap Volatile sorted hash map No No No Yes

vcmap Volatile concurrent hash map No No Yes No

tree3 Persistent B+ tree Yes Yes No No

stree Sorted persistent B+ tree Yes Yes No Yes

caching Caching for remote Memcached or
Redis server Yes Yes No -

csmap Sorted concurrent map
(under development) Yes Yes Yes Yes

https://github.com/pmem/pmemkv/blob/master/ENGINES.md#blackhole
https://github.com/pmem/pmemkv/blob/master/ENGINES.md#cmap
https://github.com/pmem/pmemkv/blob/master/ENGINES.md#vsmap
https://github.com/pmem/pmemkv/blob/master/ENGINES.md#vcmap
https://github.com/pmem/pmemkv/blob/master/ENGINES.md#tree3
https://github.com/pmem/pmemkv/blob/master/ENGINES.md#stree
https://github.com/pmem/pmemkv/blob/master/ENGINES.md#caching

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 24

Engines

• Engine contributions are welcome!
• Types:

• ordered/unordered
• persistent/volatile
• concurrent/single threaded

• Engines are optimized for different workloads & capabilities
• All engines work with all language bindings
• Generic tests for engines include:

• memcheck
• helgrind/drd
• pmemcheck
• pmemreorder

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 25

• pmemkv does not limit you to a single engine to a single memory pool

• Engines are reachable from root object

Multiple Engines Within the Same Memory Pool

Persistent Memory

/daxfs/file (libpmemobj memory pool)

cmap1

k v

cmap2

k v

root object

persistent_ptr 1
persistent_ptr 2

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 26

struct Root {
pmem::obj::persistent_ptr<PMEMoid> ptr1;
pmem::obj::persistent_ptr<PMEMoid> ptr2;

};
// libpmemobj setup here
config cfg_1;
config cfg_2;
status ret = cfg_1.put_object("oid", &(pop.root()->ptr1), nullptr);
assert(ret == status::OK);
ret = cfg_2.put_object("oid", &(pop.root()->ptr2), nullptr);
assert(ret == status::OK);

db *kv_1 = new db();
status s = kv_1->open("cmap", std::move(cfg_1));
assert(s == status::OK);

db *kv_2 = new db();
s = kv_2->open("cmap", std::move(cfg_2));
assert(s == status::OK);

Prototyped API for using
pmemkv with
libpmemobj++
simultaneously
(implementation work
ongoing)

Multiple Engines Within the Same Memory Pool

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 27

Language bindings

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 28

Language bindings

A Simple API mean:
easy to add high-level language bindings with low performance overhead

• Currently 4 available language bindings for pmemkv:
• Java https://github.com/pmem/pmemkv-java
• NodeJS https://github.com/pmem/pmemkv-nodejs
• Ruby https://github.com/pmem/pmemkv-ruby
• Python https://github.com/pmem/pmemkv-python

https://github.com/pmem/pmemkv-java
https://github.com/pmem/pmemkv-nodejs
https://github.com/pmem/pmemkv-ruby
https://github.com/pmem/pmemkv-python

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 29

Simple API

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 30

API

• Well understood key-value API
• Nothing new to learn
• Inspired by rocksDB and levelDB

• Life-cycle API
• open()/close()

• Operations API
• put(key, value)
• get(key, value/v_callback)
• remove(key)
• exists(key)

• other
• errormsg()

• Iteration API
• count_all()
• get_all(kv_callback)

• range versions of above for ordered
engines
• below/above/between

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 31

pmemkv is Simple!

config cfg;
// setup config here

status ret = kv.open("cmap", cfg);
assert(ret == status::OK);

ret = kv.put("John", "123-456-789");
assert(ret == status::OK);

std::string number;
ret = kv.get("John", &number);
assert(ret == status::OK);

ret = kv.get_all([](string_view name, string_view num) {
std::cout << name.data() << " " << num.data() << std::endl;

});
assert(ret == status::OK);

assert(kv.exists("John") == status::OK);

ret = (kv.remove("John");
assert(ret == status::OK);

kv.close();

C++ example

Direct access

Get value by copying to DRAM

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 32

pmemkv is Simple!

const db = new Database('cmap', '{"path":"/daxfs/kvfile","size":1073741824}');

db.put('John', '123-456-789');

assert(db.get('John') === '123-456-789');

db.get_all((k, v) => console.log(`name: ${k}, number: ${v}`));

db.remove('John');

assert(!db.exists('John'));

db.stop();

NodeJS example

• Similar simplicity for other high-level language bindings

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 33

Latencies and performance

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 34

Latencies and performance
• Language bindings

• number of round trips between high-level language & native code
• Create high-level object (string, byte[], reference type, callback/closure)
• Translate bytes to UTF-8
• String interning, reference counting or GC

• pmemkv core (native code)
• Searching indexes in DRAM
• Updating indexes in DRAM
• Managing transactions
• Allocating persistent memory

• Persistent Memory
• HW read and write latency

• Performance varies based on traffic pattern
• Contiguous 4 cacheline (256B) granularity vs. single random cacheline (64B) granularity
• Read vs. writes

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 35

Latencies and performance

• pmemkv_tools is a separate github repository with benchmark tool
inspired by db_bench
• https://github.com/pmem/pmemkv-tools

• Test results for cmap (persistent concurrent hashmap)
• Throughput scales with a number of threads
• P99 latency – flat

• Quote from a not-ready-for-prime-time porting effort:

The performance numbers are just incredible. Using our persistence engine with
full durability its running at ~80% the speed of RAM.

cmap performance

https://github.com/pmem/pmemkv-tools

2019 Storage Developer Conference. © Intel Corporation. All Rights Reserved. 36

Questions?

	Persistent Memory Programming Made Easy with pmemkv
	Agenda
	Why pmemkv?
	Ways to Use Persistent Memory
	The SNIA NVM Programming Model
	With Great Direct Access Comes�Great Responsibility
	PMDK�“make pmem programming easier”
	libpmemobj Performance Across Versions�B-tree Benchmark
	Why pmemkv?
	Why pmemkv?
	pmemkv design
	pmemkv design goals
	pmemkv architecture
	pmemkv configuration
	pmemkv design
	pmemkv design
	pmemkv design
	pmemkv design
	pmemkv design
	pmemkv design
	pmemkv design
	Engines
	Engines
	Engines
	Slide Number 25
	Slide Number 26
	Language bindings
	Language bindings
	Simple API
	API
	pmemkv is Simple!
	pmemkv is Simple!
	Latencies and performance
	Latencies and performance
	Latencies and performance
	Questions?

