
2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 1

Remote Persistent Memory
SNIA Nonvolatile Memory Programming TWG

Tom Talpey (Microsoft)
Alan Bumgarner (Intel)

SNIA NVMP TWG co-chairs

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 2

Outline

 SNIA NVMP TWG background
 NVMP Interface concepts
 RDMA requirements and extensions
 Current and future TWG focus

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 3

NVM Programming Model TWG - Mission

 Accelerate the availability of software that enables
Persistent Memory (PM) hardware.
 Hardware includes SSD’s and PM
 Software spans applications and OS’s

 Create the NVM Programming Model
 Describes application-visible behaviors
 Allows API’s to align with OS’s
 Describes opportunities in networks and processors

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 4

SNIA NVM Programming Model
 Version 1.2 approved by SNIA in June 2017
 Expose new block and file features to applications

 Atomicity capability and granularity
 Thin provisioning management

 Use of memory mapped files for persistent memory
 Existing abstraction that can act as a bridge
 Limits the scope of application re-invention
 Open source implementations available

 Programming Model, not API
 Described in terms of attributes, actions and use cases
 Implementations map actions and attributes to API’s

https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 5

NVM Programming Model modes
IO Persistent Memory

User View NVM.FILE NVM.PM.FILE

Kernel Protected NVM.BLOCK NVM.PM.VOLUME

Media Type Disk Drive Persistent Memory

NVDIMM Disk-Like Memory-Like

Block Mode Innovation Emerging PM Technologies

The current version (1.2) of the specification is available at
https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf

5

 Volume and PM modes enable Load/Store/Move
 Data is loaded into or stored from processor

registers
 Processor waits for data during instruction
 No status returned – errors generate exceptions

 Block and File modes use IO
 Data is read or written using RAM buffers
 Software controls how to wait (context switch

or poll)
 Status is explicitly checked by software

https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 6

Remote Access for HA
 History

 Remote Access for High Availability white paper
 Originally published 2016
 Update published May 2019

 NVM Programming Model Specification update in development
 Update specification to reflect learning from implementations
 Incorporate learning from remote access white paper

 Asynchronous Flush
 Remote persistence ordering, error handling

 Remote Access Collaboration with Open Fabrics Alliance OFIWG
 PMEM Remote Access for HA
 Expand remote access use case enumeration

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 7

Persistent Memory (PM) Modes, +Remote

Remote Peer

PM Aware Apps

U
se

r m
od

e
Ke

rn
el

 m
od

e

PM Aware File
Systems

PM capable Driver

PM Device

NVM.PM.FILE Mode

PM VOLUME Mode

File APIs M
em

ory load/store

RDMA NIC

RDMA
Operations

RDMA NIC

PM Device

RDMA Data

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 8

NVM Programming Interface

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 9

NVMP Interface: Map and Sync
 Map (local PMEM)

 Associates memory addresses with open file
 Caller may request specific address

 Sync (local PMEM)
 Flush CPU cache for indicated range
 Additional Sync types
 Optimized Flush – multiple ranges from user space
 Optimized Flush and Verify – Optimized flush with verification from media
 Warning! Sync does not guarantee order

 All the above are true remotely, but
 Remote addresses are not “mapped”

 Stores do not magically become RDMA Writes
 Flushing applies to RDMA, network and i/o pipeline (not simply CPU)
 An asynchronous flush is needed for efficiency!

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 10

Key Remotable NVMP interfaces

 Directly mappable to RDMA (with extensions):
 In NVMP 1.2:

 OPTIMIZED_FLUSH
 OPTIMIZED_FLUSH_AND_VERIFY

 Under discussion for updated NVMP:
 ASYNC_FLUSH (initiates flushing)
 ASYNC_DRAIN (waits for flush completion, persist fence)
 Ordering (write-after-flush)

 Other NVM PM methods remotable via upper layer(s)

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 11

PMEM Remote Access ladder diagram
App: SW PeerA:

Host SW
PeerANIC:

RNic
PeerBNIC:

RNic
PeerBPM:

PM
PeerB:

Host SW

Optimized
Flush RDMAWrite

RDMAWrite

Write

RDMAWrite

Write

RDMAWrite

Flush

Flush

Flush

1

2

3

RDMAWrite

Flush
RDMAWrite

Write

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 12

Asynchronous Flush
 Separates “Flush” and “Drain” stages
 Allows early scheduling of Writes without blocking

 “Giddy-up”
 Important for efficient concurrent processing
 For both applications and middleware libs

 Drain allows application to ensure persistence
 Less data remaining to flush: less wait latency

 Error conditions require careful analysis
 Subject of NVMP TWG current work

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 13

Asyncronous Flush (NVMP 2.0 Proposal)

 Application overlapped processing
 Async_Flush invokes library

 Library initiates RDMA Write(s) to RPM
 Pipelined - does not wait, immediately returns

 Additional application processing…
 Async_Flush initiates more RDMA Write(s)

 Pipelined - does not wait
 Async_Drain initiates Remote Flush

 Library queues RDMA Flush after all prior RDMA
Writes

 Async_Drain completes only after all Writes Flush to
PM

 Note: application may also continue during this
processing

 Tricky bits (1,2,3):
 Same as in prior example!
 But note subtlety:

 Application Flush -> RDMA Write
 Application Drain -> RDMA Flush

 RDMA protocol:
 Same as in prior example!
 “Ordering Nexus” is simply the Queue Pair

App: SW PeerA:
Host SW

PeerA:
Adapter

PeerB:
Adapter PeerB: PMPeerB:

Host SW

Async_Drain

RDMAWrite

RDMAWrite

Write

RDMAWrite

Write

RDMAWrite

Flush

Flush

Flush

1

2

3

RDMAWrite
Flush

RDMAWrite

Write

Store

Store
Store

Async_Flush

Async_Flush

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 14

Additional NVMP Concepts
 “Consumers of visibility” vs “Consumers of persistence”

 Visibility – e.g. network shared memory
 Persistence – e.g. storage

 Differing semantic
 E.g.: Compare and Swap in PMEM does not necessarily yield a persistent lock!
 Because visibility is not achieved atomically with persistence

 Assurance of persistence integrity (“Verify”)
 Explicit integrity, as opposed to current Best-effort

 Scope of flush
 Global, per-stream, or per-region?

 Conceptual “store barrier” or “order nexus” abstraction
 Streams of stores, which are later flushed to ensure persistence

 Flush hints (ASYNC_FLUSH)
 Modeling these in programming interface, and protocol
 Understanding, and guiding, platform implementation

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 15

Protocol(s)

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 16

RDMA Protocols

 “RDMA Flush” proposed
 Broad agreement in IBTA, IETF
 RDMA Protocols being extended to support

remote persistence guarantee
 Requires additional platform support
 Possible PCIe extension

 Progressing slowly, but surely

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 17

RDMA Flush

 New RDMA transport operation
 Existing RDMA memory operations remain unchanged
 Flush executes like RDMA Read, and like local Flush/Drain

 Ordered, acknowledged
 And, flow-controlled

 Requestor specifies byte ranges to be made durable
 Memory Region range-based {region handle, offset, length}

 Responder response guarantees specified range is persisted
 Responder may flush additional bytes based on implementation

 Scope considerations
 Per-connection, per-region or per-region-range possible
 Single Flush may act upon many prior Writes
 Responder acknowledges only when persistence complete

 Connection breaks if error occurs
 Selectivity considerations

 Flush to “Visibility” or “Persistence”

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 18

RDMA Flush - Overview
 Non-Posted/Queued

• Non-deterministic execution time (PCIe, media type, media
interface)

 Preserve RDMA Operation Model
• Follow Existing RDMA Ordering Rules of Non-

Posted/Queued operations
- Posted operations (i.e. WRITE) can bypass non-posted

operations (i.e. READ)
- Non-posted (i.e. READ) operations can’t bypass posted

operations (i.e. WRITE)
• RDMA transport operations remain unchanged

 Performance Requirements
• Amortize Cost of the FLUSH Operation
• FLUSH Selectiveness
• FLUSH Pipelining

 Types
• Global Visibility
• Persistency

Host HCA HCA Memory

FLUSH
Done

FLUSH
Memory

Subsystem

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 19

Persistency vs Visibility
 Persistency

 FLUSH type persistency shall ensure the placement of
preceding data accesses in a memory that persists the
data across power cycle, response shall be sent only
after successful completion in the responder.

 Global Visibility
 FLUSH type consistency shall ensure the placement of

the preceding data accesses in the memory domain to
be visible for reading for the responder platform

 The responder shall respond after the FLUSH has been
executed and completed according to its type

 N.B. Persistency also/always provides Visibility

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 20

Flush Scope

 Memory Region Range
 FLUSH preceding data access within the range

{Handle, VA, Length} within the QP
 Memory Region

 FLUSH preceding data access within the Handle and
within the QP

 All
 FLUSH all preceding data accesses within the QP

 Implementation determined by the responder
 Not explicit in the protocol

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 21

RDMA Atomic Write

 Also require a transactional write in support
of two-phase commit

 Solution: Atomic Write operation
 Second new transport function
 Atomically updates 8-byte size, 8-byte

aligned value
 Non-posted/Queued, and ordered after

Flush

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 22

PCI Protocol
 Efficient RDMA Flush requires PCIe extension
 Allow RDMA adapter to invoke without CPU

 Minimal latency and overhead
 PCI SIG reportedly considering Flush semantic

 To enable platform-independent RNIC behaviors
 PCI “Atomic Ops ECN” (August 2017)

 May provide additional semantic guarantees for
Atomic Write RDMA operation

 “Out of Band” (platform-specific) solutions are
possible

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 23

Workloads

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 24

Remote PM Workloads
 High Availability (HA)

 Resilience, recovery, “RAID-like” properties
 Replication
 Scaleout

 Transactions
 Atomicity (failure atomicity)

 Networked Shared Memory
 Including Publish/Subscribe model

 And others!

 Desire to maintain:
 Ultra-low latency (~ +1 RTT: O(µseconds))
 Programming model compatibility

 Ideally, transparency!

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 25

Workload: Basic Replication
 Simple replication (mirroring) with writes and flushes

 Write, optionally more Writes, OPTIMIZED_FLUSH
 No overwrite
 No ordering dependency (but see following

workloads)
 No completions at data sink
 Pipelined (no “bubbles”)

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 26

Remote Flush (Basic Semantic)
 Optimized Flush invokes

library
 Library initiates RDMA

Write(s) to RPM
 Library initiates Remote

Flush
 Ordered after prior

Writes
 And blocks for

Write+Flush completion
 Returns (only) when

Flush is complete

 Tricky bits:
1. RDMA Writes complete at requestor before stores

to PM at responder
2. Remote Flush arrives before Writes are executed

at responder
3. Remote Flush must wait at responder until all

Writes are safely in PM

Optimized
Flush RDMAWrite

RDMAWrite

Write

RDMAWrite

Write

RDMAWrite

Flush

Flush

Flush

1

2

3

RDMAWrite

Flush
RDMAWrite

Write

App: SW PeerA:
Host SW

PeerA:
Adapter

PeerB:
Adapter PeerB: PMPeerB:

Host SW

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 27

Workload: Log Writer
(Filesystem, Database)

 For (ever)
{ Write log record, Commit }, { Write log pointer }

 Latency is critical
 Log pointer cannot be placed until log record is successfully made

durable
 Log pointer is the validity indicator for the log record
 i.e., Transaction model

 Log records are eventually retired, buffer is circular
 Protocol implications:

 Must ensure successful commit (e.g. ASYNC_DRAIN)
 Potentially introduces a pipeline bubble – which would be very bad for

throughput and overall latency
 Desire an ordering between Commit and second Write to avoid this

 Utilize RDMA “Atomic Write”

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 28

Write, Flush and Atomic Write

 RDMA Atomic Write
 Additional new non-

posted/queued
operation

 Executes at responder
only after successful
prior non-posted
operations (i.e. Flush)

 Implementable at
responder with or
without PCIe Atomic
support

 Logwriter example shown
 Similarly able to support 2-

phase commit

Flush

Host
SW

Host
PMNIC NIC

Log
buffers

Log
pointer

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 29

Workload: Paranoid Log Writer
(Remote Data Integrity)

 Assuming we have an RDMA Write + RDMA Commit
 And the Writes + Commit all complete (with success or failure)
 How does the initiator know the data is intact?

 Or in case of failure, which data is not intact?
 BEFORE completing the transaction (e.g. writing the log pointer)

 Possibilities:
 Reading back

 extremely undesirable (and possibly not actually reading media!)
 Signaling upper layer

 high overhead
 Upper layer possibly unavailable (the “Memory-Only Appliance”!)

 Same question applies also to:
 Array “scrub” (verifying existing data)
 Storage management and recovery (rebuild)

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 30

Write, Flush and Verify
(OPTIMIZED_FLUSH_AND_VERIFY)

Flush

Host
SW

Host
PMEMNIC NIC

Verify

 RDMA “Verify”
 Under discussion

 Computes and returns the hash of a
region
 Non-posted/queued to execute at

responder only after prior Flush etc
 Must read the actual persistence

domain, not the visibility domain!
 Optional behavior to return the

hash, or break connection on
mismatch

 In support of enhanced “Optimized Flush
and Verify”

 Supports “paranoid log writer”
 Using break-on-mismatch to fence

a following Atomic Write
 Without requiring a pipeline bubble!

 Also supports “scrub”
 Using return-the-hash

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 31

RDMA Extension Implications on
Programming Model

 Strengthens need for ASYNC_FLUSH
 Increased imprecision of errors

 RDMA connection is simply broken
 Need for bubbling up AtomicWrite completion?
 Asynchronous Verify indication?
 Verify Fail imprecision in connection-break mode

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 32

RDMA PM Extensions Next Steps

 SNIA NVMP TWG specification work continues
 OFIWG feedback on semantics
 Integration of RDMA Protocol proposed extensions

 IBTA, IETF RDMA Standards specification proceed
 OFIWG and RDMA software implementation

 In Open Source, commercial operating systems, etc
 RDMA vendor implementation
 PCI SIG specification and broad PCIe implementation

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 33

Ongoing NVMP TWG work
 Core NVM PM update

 Current “v2.0” work in progress (in the NVMP TWG)
 Asynchronous Flush
 Incorporate implementation learnings

 Optimized Flush, Deep Flush, Flush on Fail
 Interaction between NVMP and C memory model (!)
 Visibility versus Persistence

 Continue Remote Access for HA work
 Greater RDMA mapping detail
 Efficient remote programming interface models
 RDMA and platform requirements clarified
 Errors, error handling, error recovery in remote scenario
 Collaboration with Open Fabrics Alliance OFI WG

 Scope of flush, flush barriers, analysis
 “Flush on Fail Fail” (failure of persistence) analysis

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 34

References

SNIA NVM Programming TWG:
https://www.snia.org/forums/sssi/nvmp

PM Programming Model:
https://www.snia.org/tech_activities/standards/curr_standards/npm

PM Remote Access for HA (and other papers):
https://www.snia.org/tech_activities/standards/whitepapers

https://www.snia.org/forums/sssi/nvmp
https://www.snia.org/tech_activities/standards/curr_standards/npm
https://www.snia.org/tech_activities/standards/whitepapers

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 35

Thank you!

	Remote Persistent Memory�SNIA Nonvolatile Memory Programming TWG
	Outline
	NVM Programming Model TWG - Mission
	SNIA NVM Programming Model
	NVM Programming Model modes
	Remote Access for HA
	Persistent Memory (PM) Modes, +Remote
	NVM Programming Interface
	NVMP Interface: Map and Sync
	Key Remotable NVMP interfaces
	PMEM Remote Access ladder diagram
	Asynchronous Flush
	Asyncronous Flush (NVMP 2.0 Proposal)
	Additional NVMP Concepts
	Protocol(s)
	RDMA Protocols
	RDMA Flush	
	RDMA Flush - Overview
	Persistency vs Visibility
	Flush Scope
	RDMA Atomic Write
	PCI Protocol
	Workloads
	Remote PM Workloads
	Workload: Basic Replication
	Remote Flush (Basic Semantic)
	Workload: Log Writer�(Filesystem, Database)
	Write, Flush and Atomic Write
	Workload: Paranoid Log Writer�(Remote Data Integrity)
	Write, Flush and Verify (OPTIMIZED_FLUSH_AND_VERIFY)
	RDMA Extension Implications on Programming Model
	RDMA PM Extensions Next Steps
	Ongoing NVMP TWG work
	References
	Thank you!

