
2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 1

Remote Persistent Memory
SNIA Nonvolatile Memory Programming TWG

Tom Talpey (Microsoft)
Alan Bumgarner (Intel)

SNIA NVMP TWG co-chairs

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 2

Outline

 SNIA NVMP TWG background
 NVMP Interface concepts
 RDMA requirements and extensions
 Current and future TWG focus

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 3

NVM Programming Model TWG - Mission

 Accelerate the availability of software that enables
Persistent Memory (PM) hardware.
 Hardware includes SSD’s and PM
 Software spans applications and OS’s

 Create the NVM Programming Model
 Describes application-visible behaviors
 Allows API’s to align with OS’s
 Describes opportunities in networks and processors

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 4

SNIA NVM Programming Model
 Version 1.2 approved by SNIA in June 2017
 Expose new block and file features to applications

 Atomicity capability and granularity
 Thin provisioning management

 Use of memory mapped files for persistent memory
 Existing abstraction that can act as a bridge
 Limits the scope of application re-invention
 Open source implementations available

 Programming Model, not API
 Described in terms of attributes, actions and use cases
 Implementations map actions and attributes to API’s

https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 5

NVM Programming Model modes
IO Persistent Memory

User View NVM.FILE NVM.PM.FILE

Kernel Protected NVM.BLOCK NVM.PM.VOLUME

Media Type Disk Drive Persistent Memory

NVDIMM Disk-Like Memory-Like

Block Mode Innovation Emerging PM Technologies

The current version (1.2) of the specification is available at
https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf

5

 Volume and PM modes enable Load/Store/Move
 Data is loaded into or stored from processor

registers
 Processor waits for data during instruction
 No status returned – errors generate exceptions

 Block and File modes use IO
 Data is read or written using RAM buffers
 Software controls how to wait (context switch

or poll)
 Status is explicitly checked by software

https://www.snia.org/sites/default/files/technical_work/final/NVMProgrammingModel_v1.2.pdf

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 6

Remote Access for HA
 History

 Remote Access for High Availability white paper
 Originally published 2016
 Update published May 2019

 NVM Programming Model Specification update in development
 Update specification to reflect learning from implementations
 Incorporate learning from remote access white paper

 Asynchronous Flush
 Remote persistence ordering, error handling

 Remote Access Collaboration with Open Fabrics Alliance OFIWG
 PMEM Remote Access for HA
 Expand remote access use case enumeration

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 7

Persistent Memory (PM) Modes, +Remote

Remote Peer

PM Aware Apps

U
se

r m
od

e
Ke

rn
el

 m
od

e

PM Aware File
Systems

PM capable Driver

PM Device

NVM.PM.FILE Mode

PM VOLUME Mode

File APIs M
em

ory load/store

RDMA NIC

RDMA
Operations

RDMA NIC

PM Device

RDMA Data

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 8

NVM Programming Interface

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 9

NVMP Interface: Map and Sync
 Map (local PMEM)

 Associates memory addresses with open file
 Caller may request specific address

 Sync (local PMEM)
 Flush CPU cache for indicated range
 Additional Sync types
 Optimized Flush – multiple ranges from user space
 Optimized Flush and Verify – Optimized flush with verification from media
 Warning! Sync does not guarantee order

 All the above are true remotely, but
 Remote addresses are not “mapped”

 Stores do not magically become RDMA Writes
 Flushing applies to RDMA, network and i/o pipeline (not simply CPU)
 An asynchronous flush is needed for efficiency!

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 10

Key Remotable NVMP interfaces

 Directly mappable to RDMA (with extensions):
 In NVMP 1.2:

 OPTIMIZED_FLUSH
 OPTIMIZED_FLUSH_AND_VERIFY

 Under discussion for updated NVMP:
 ASYNC_FLUSH (initiates flushing)
 ASYNC_DRAIN (waits for flush completion, persist fence)
 Ordering (write-after-flush)

 Other NVM PM methods remotable via upper layer(s)

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 11

PMEM Remote Access ladder diagram
App: SW PeerA:

Host SW
PeerANIC:

RNic
PeerBNIC:

RNic
PeerBPM:

PM
PeerB:

Host SW

Optimized
Flush RDMAWrite

RDMAWrite

Write

RDMAWrite

Write

RDMAWrite

Flush

Flush

Flush

1

2

3

RDMAWrite

Flush
RDMAWrite

Write

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 12

Asynchronous Flush
 Separates “Flush” and “Drain” stages
 Allows early scheduling of Writes without blocking

 “Giddy-up”
 Important for efficient concurrent processing
 For both applications and middleware libs

 Drain allows application to ensure persistence
 Less data remaining to flush: less wait latency

 Error conditions require careful analysis
 Subject of NVMP TWG current work

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 13

Asyncronous Flush (NVMP 2.0 Proposal)

 Application overlapped processing
 Async_Flush invokes library

 Library initiates RDMA Write(s) to RPM
 Pipelined - does not wait, immediately returns

 Additional application processing…
 Async_Flush initiates more RDMA Write(s)

 Pipelined - does not wait
 Async_Drain initiates Remote Flush

 Library queues RDMA Flush after all prior RDMA
Writes

 Async_Drain completes only after all Writes Flush to
PM

 Note: application may also continue during this
processing

 Tricky bits (1,2,3):
 Same as in prior example!
 But note subtlety:

 Application Flush -> RDMA Write
 Application Drain -> RDMA Flush

 RDMA protocol:
 Same as in prior example!
 “Ordering Nexus” is simply the Queue Pair

App: SW PeerA:
Host SW

PeerA:
Adapter

PeerB:
Adapter PeerB: PMPeerB:

Host SW

Async_Drain

RDMAWrite

RDMAWrite

Write

RDMAWrite

Write

RDMAWrite

Flush

Flush

Flush

1

2

3

RDMAWrite
Flush

RDMAWrite

Write

Store

Store
Store

Async_Flush

Async_Flush

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 14

Additional NVMP Concepts
 “Consumers of visibility” vs “Consumers of persistence”

 Visibility – e.g. network shared memory
 Persistence – e.g. storage

 Differing semantic
 E.g.: Compare and Swap in PMEM does not necessarily yield a persistent lock!
 Because visibility is not achieved atomically with persistence

 Assurance of persistence integrity (“Verify”)
 Explicit integrity, as opposed to current Best-effort

 Scope of flush
 Global, per-stream, or per-region?

 Conceptual “store barrier” or “order nexus” abstraction
 Streams of stores, which are later flushed to ensure persistence

 Flush hints (ASYNC_FLUSH)
 Modeling these in programming interface, and protocol
 Understanding, and guiding, platform implementation

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 15

Protocol(s)

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 16

RDMA Protocols

 “RDMA Flush” proposed
 Broad agreement in IBTA, IETF
 RDMA Protocols being extended to support

remote persistence guarantee
 Requires additional platform support
 Possible PCIe extension

 Progressing slowly, but surely

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 17

RDMA Flush

 New RDMA transport operation
 Existing RDMA memory operations remain unchanged
 Flush executes like RDMA Read, and like local Flush/Drain

 Ordered, acknowledged
 And, flow-controlled

 Requestor specifies byte ranges to be made durable
 Memory Region range-based {region handle, offset, length}

 Responder response guarantees specified range is persisted
 Responder may flush additional bytes based on implementation

 Scope considerations
 Per-connection, per-region or per-region-range possible
 Single Flush may act upon many prior Writes
 Responder acknowledges only when persistence complete

 Connection breaks if error occurs
 Selectivity considerations

 Flush to “Visibility” or “Persistence”

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 18

RDMA Flush - Overview
 Non-Posted/Queued

• Non-deterministic execution time (PCIe, media type, media
interface)

 Preserve RDMA Operation Model
• Follow Existing RDMA Ordering Rules of Non-

Posted/Queued operations
- Posted operations (i.e. WRITE) can bypass non-posted

operations (i.e. READ)
- Non-posted (i.e. READ) operations can’t bypass posted

operations (i.e. WRITE)
• RDMA transport operations remain unchanged

 Performance Requirements
• Amortize Cost of the FLUSH Operation
• FLUSH Selectiveness
• FLUSH Pipelining

 Types
• Global Visibility
• Persistency

Host HCA HCA Memory

FLUSH
Done

FLUSH
Memory

Subsystem

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 19

Persistency vs Visibility
 Persistency

 FLUSH type persistency shall ensure the placement of
preceding data accesses in a memory that persists the
data across power cycle, response shall be sent only
after successful completion in the responder.

 Global Visibility
 FLUSH type consistency shall ensure the placement of

the preceding data accesses in the memory domain to
be visible for reading for the responder platform

 The responder shall respond after the FLUSH has been
executed and completed according to its type

 N.B. Persistency also/always provides Visibility

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 20

Flush Scope

 Memory Region Range
 FLUSH preceding data access within the range

{Handle, VA, Length} within the QP
 Memory Region

 FLUSH preceding data access within the Handle and
within the QP

 All
 FLUSH all preceding data accesses within the QP

 Implementation determined by the responder
 Not explicit in the protocol

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 21

RDMA Atomic Write

 Also require a transactional write in support
of two-phase commit

 Solution: Atomic Write operation
 Second new transport function
 Atomically updates 8-byte size, 8-byte

aligned value
 Non-posted/Queued, and ordered after

Flush

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 22

PCI Protocol
 Efficient RDMA Flush requires PCIe extension
 Allow RDMA adapter to invoke without CPU

 Minimal latency and overhead
 PCI SIG reportedly considering Flush semantic

 To enable platform-independent RNIC behaviors
 PCI “Atomic Ops ECN” (August 2017)

 May provide additional semantic guarantees for
Atomic Write RDMA operation

 “Out of Band” (platform-specific) solutions are
possible

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 23

Workloads

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 24

Remote PM Workloads
 High Availability (HA)

 Resilience, recovery, “RAID-like” properties
 Replication
 Scaleout

 Transactions
 Atomicity (failure atomicity)

 Networked Shared Memory
 Including Publish/Subscribe model

 And others!

 Desire to maintain:
 Ultra-low latency (~ +1 RTT: O(µseconds))
 Programming model compatibility

 Ideally, transparency!

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 25

Workload: Basic Replication
 Simple replication (mirroring) with writes and flushes

 Write, optionally more Writes, OPTIMIZED_FLUSH
 No overwrite
 No ordering dependency (but see following

workloads)
 No completions at data sink
 Pipelined (no “bubbles”)

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 26

Remote Flush (Basic Semantic)
 Optimized Flush invokes

library
 Library initiates RDMA

Write(s) to RPM
 Library initiates Remote

Flush
 Ordered after prior

Writes
 And blocks for

Write+Flush completion
 Returns (only) when

Flush is complete

 Tricky bits:
1. RDMA Writes complete at requestor before stores

to PM at responder
2. Remote Flush arrives before Writes are executed

at responder
3. Remote Flush must wait at responder until all

Writes are safely in PM

Optimized
Flush RDMAWrite

RDMAWrite

Write

RDMAWrite

Write

RDMAWrite

Flush

Flush

Flush

1

2

3

RDMAWrite

Flush
RDMAWrite

Write

App: SW PeerA:
Host SW

PeerA:
Adapter

PeerB:
Adapter PeerB: PMPeerB:

Host SW

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 27

Workload: Log Writer
(Filesystem, Database)

 For (ever)
{ Write log record, Commit }, { Write log pointer }

 Latency is critical
 Log pointer cannot be placed until log record is successfully made

durable
 Log pointer is the validity indicator for the log record
 i.e., Transaction model

 Log records are eventually retired, buffer is circular
 Protocol implications:

 Must ensure successful commit (e.g. ASYNC_DRAIN)
 Potentially introduces a pipeline bubble – which would be very bad for

throughput and overall latency
 Desire an ordering between Commit and second Write to avoid this

 Utilize RDMA “Atomic Write”

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 28

Write, Flush and Atomic Write

 RDMA Atomic Write
 Additional new non-

posted/queued
operation

 Executes at responder
only after successful
prior non-posted
operations (i.e. Flush)

 Implementable at
responder with or
without PCIe Atomic
support

 Logwriter example shown
 Similarly able to support 2-

phase commit

Flush

Host
SW

Host
PMNIC NIC

Log
buffers

Log
pointer

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 29

Workload: Paranoid Log Writer
(Remote Data Integrity)

 Assuming we have an RDMA Write + RDMA Commit
 And the Writes + Commit all complete (with success or failure)
 How does the initiator know the data is intact?

 Or in case of failure, which data is not intact?
 BEFORE completing the transaction (e.g. writing the log pointer)

 Possibilities:
 Reading back

 extremely undesirable (and possibly not actually reading media!)
 Signaling upper layer

 high overhead
 Upper layer possibly unavailable (the “Memory-Only Appliance”!)

 Same question applies also to:
 Array “scrub” (verifying existing data)
 Storage management and recovery (rebuild)

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 30

Write, Flush and Verify
(OPTIMIZED_FLUSH_AND_VERIFY)

Flush

Host
SW

Host
PMEMNIC NIC

Verify

 RDMA “Verify”
 Under discussion

 Computes and returns the hash of a
region
 Non-posted/queued to execute at

responder only after prior Flush etc
 Must read the actual persistence

domain, not the visibility domain!
 Optional behavior to return the

hash, or break connection on
mismatch

 In support of enhanced “Optimized Flush
and Verify”

 Supports “paranoid log writer”
 Using break-on-mismatch to fence

a following Atomic Write
 Without requiring a pipeline bubble!

 Also supports “scrub”
 Using return-the-hash

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 31

RDMA Extension Implications on
Programming Model

 Strengthens need for ASYNC_FLUSH
 Increased imprecision of errors

 RDMA connection is simply broken
 Need for bubbling up AtomicWrite completion?
 Asynchronous Verify indication?
 Verify Fail imprecision in connection-break mode

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 32

RDMA PM Extensions Next Steps

 SNIA NVMP TWG specification work continues
 OFIWG feedback on semantics
 Integration of RDMA Protocol proposed extensions

 IBTA, IETF RDMA Standards specification proceed
 OFIWG and RDMA software implementation

 In Open Source, commercial operating systems, etc
 RDMA vendor implementation
 PCI SIG specification and broad PCIe implementation

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 33

Ongoing NVMP TWG work
 Core NVM PM update

 Current “v2.0” work in progress (in the NVMP TWG)
 Asynchronous Flush
 Incorporate implementation learnings

 Optimized Flush, Deep Flush, Flush on Fail
 Interaction between NVMP and C memory model (!)
 Visibility versus Persistence

 Continue Remote Access for HA work
 Greater RDMA mapping detail
 Efficient remote programming interface models
 RDMA and platform requirements clarified
 Errors, error handling, error recovery in remote scenario
 Collaboration with Open Fabrics Alliance OFI WG

 Scope of flush, flush barriers, analysis
 “Flush on Fail Fail” (failure of persistence) analysis

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 34

References

SNIA NVM Programming TWG:
https://www.snia.org/forums/sssi/nvmp

PM Programming Model:
https://www.snia.org/tech_activities/standards/curr_standards/npm

PM Remote Access for HA (and other papers):
https://www.snia.org/tech_activities/standards/whitepapers

https://www.snia.org/forums/sssi/nvmp
https://www.snia.org/tech_activities/standards/curr_standards/npm
https://www.snia.org/tech_activities/standards/whitepapers

2019 Storage Developer Conference. © SNIA NVM Programming TWG. All Rights Reserved. 35

Thank you!

	Remote Persistent Memory�SNIA Nonvolatile Memory Programming TWG
	Outline
	NVM Programming Model TWG - Mission
	SNIA NVM Programming Model
	NVM Programming Model modes
	Remote Access for HA
	Persistent Memory (PM) Modes, +Remote
	NVM Programming Interface
	NVMP Interface: Map and Sync
	Key Remotable NVMP interfaces
	PMEM Remote Access ladder diagram
	Asynchronous Flush
	Asyncronous Flush (NVMP 2.0 Proposal)
	Additional NVMP Concepts
	Protocol(s)
	RDMA Protocols
	RDMA Flush	
	RDMA Flush - Overview
	Persistency vs Visibility
	Flush Scope
	RDMA Atomic Write
	PCI Protocol
	Workloads
	Remote PM Workloads
	Workload: Basic Replication
	Remote Flush (Basic Semantic)
	Workload: Log Writer�(Filesystem, Database)
	Write, Flush and Atomic Write
	Workload: Paranoid Log Writer�(Remote Data Integrity)
	Write, Flush and Verify (OPTIMIZED_FLUSH_AND_VERIFY)
	RDMA Extension Implications on Programming Model
	RDMA PM Extensions Next Steps
	Ongoing NVMP TWG work
	References
	Thank you!

