
2019 Storage Developer Conference. © Intel. All Rights Reserved. 1

Spark-PMoF: Accelerating

Bigdata Analytics with

Persistent Memory over

Fabrics

Haodong Tang (haodong.tang@intel.com)

Jian Zhang (jian.zhang@intel.com)

Yuan Zhou (yuan.zhou@intel.com)

mailto:haodong.tang@intel.com
mailto:jian.zhang@intel.com
mailto:yuan.zhou@intel.com

2019 Storage Developer Conference. © Intel. All Rights Reserved. 2

Agenda

▪ Background and motivation

▪ Persistent Memory over Fabrics (PMoF)

▪ Spark-PMoF design

▪ Spark-PMoF performance evaluation

▪ Next-step

2019 Storage Developer Conference. © Intel. All Rights Reserved. 3

Background and motivation

2019 Storage Developer Conference. © Intel. All Rights Reserved. 4

Challenges of scaling Hadoop* Storage

BOUNDED Storage and Compute resources on Hadoop Nodes brings challenges

Data/Capacity

Upgrade Cost

Space, Power, Utilization

Multiple Storage Silos

Inadequate Performance

Typical Challenges

Costs

Provisioning and Configuration

Performance
& efficiency

Data Capacity Silos

*Other names and brands may be claimed as the property of others.

2019 Storage Developer Conference. © Intel. All Rights Reserved. 5

Discontinuity in bigdata infrastructure

makes different solution

Get a bigger cluster

for many teams to share.

Give teams ability to

spin-up/spin-down

clusters which can

share data sets.

Give each team their

own dedicated cluster,

each with a copy of

PBs of data.

SINGLE LARGE

CLUSTER
MULTIPLE SMALL CLUSTERS ON DEMAND ANALYTIC

CLUSTERS

2019 Storage Developer Conference. © Intel. All Rights Reserved. 6

Benefits of compute and storage

disaggregation

Independent scale
of CPU and

storage capacity

• Right size HW for
each layer

• Reduce resource
wastage

• Cost saving

Single copy of
data

• Multiple compute
cluster share
common data
repo/lake

• Simplified data
management

• Reduced
provisioning
overhead

• Improve security

Enable Agile
application

development

• In-memory
cloning

• Snapshot service

• Quick & efficient
copies

Hybrid cloud
deployment

• Mix and match
resources
depending on
workload nature
and life cycle

Simple and flexible
software

management

• Avoid software
version
management

• Upgrade compute
software only

2019 Storage Developer Conference. © Intel. All Rights Reserved. 7

Disaggregation leads to performance

regression

1.0 1.0 1.0 1.0
0.9 0.9

1.3

1.0

0.7 0.7

0.4

0.6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Batch Query (54 quiries) IO INTENSIVE (7 quiries) TERASORT 1T KMEANS 374g

Performance Comparision of Disaggregated analytics storage with different workloads

(Normalized)

spark(yarn) + Local HDFS (HDD) spark(yarn) + Remote HDFS (HDD) spark(yarn) + S3 (HDD)

▪ Storage disaggregation leads to performance regression
▪ Up to 10% for remote HDFS, Terasort performance is higher as usable memory increased

▪ Up to 60% for S3 object storage (optimized results with tunings)

▪ One important cause for the performance gap: s3a does not support Transactional Writes
▪ Most of bigdata software (Spark, Hive) relies on HDFS’s atomic rename feature to support atomic writes

▪ During job submit, commit protocol is used to specify how results should be written at the end of job

▪ First stage task output into temporary locations, and only moving (renaming) data to final location upon task or job completion

▪ S3a implements this with: COPY+DELETE+HEAD+POST

▪ The gap in public cloud will be much smaller
▪ It is not an on-premise configuration

▪ Compute are running in side VMs/containers, while HDFS was running on elastic block volumes

2019 Storage Developer Conference. © Intel. All Rights Reserved. 8

Persistent memory over fabrics (PMoF)

8

2019 Storage Developer Conference. © Intel. All Rights Reserved. 9

Why persistent memory

▪ Persistent Memory

▪ PMEM represents a new class of memory and storage technology architected specifically for

data center usage

▪ Combination of high-capacity, affordability and persistence.

Picture source: https://docs.pmem.io/getting-started-guide/introduction

https://docs.pmem.io/getting-started-guide/introduction

2019 Storage Developer Conference. © Intel. All Rights Reserved. 10

Why RDMA

▪ Remote persistent memory requirement

▪ PM is really fast (Especially for Read)

▪ Needs ultra low-latency networking

▪ PM has very high bandwidth per socket

▪ Needs ultra efficient protocol, transport offload, high BW

▪ Remote access must not add significant latency

▪ Network switches & adaptors deliver predictability, fairness, zero packet loss

▪ RDMA offers

▪ Low latency

▪ High BW

▪ zero-copy, kernel bypass, HW offered one side memory to remote memory operations

▪ Reliable credit base data and control delivered by HW

▪ Network resiliency, scale-out

2019 Storage Developer Conference. © Intel. All Rights Reserved. 11

Persistent Memory over Fabrics (PMoF)

▪ Replicate Data in local PM

across Fabric and Store in

remote PM

▪ DRBD

▪ Expand on-node memory

capacity (w/ or w/o

persistency) in a

disaggregated architecture

▪ PM holds shared data

among distributed

application

▪ Spark-PMoF

*Picture source: https://www.snia.org/sites/default/files/PM-

Summit/2018/presentations/05_PM_Summit_Grun_PM_%20Final_Post_CORRECTED.pdf

https://www.snia.org/sites/default/files/PM-Summit/2018/presentations/05_PM_Summit_Grun_PM_%20Final_Post_CORRECTED.pdf

2019 Storage Developer Conference. © Intel. All Rights Reserved. 12

Spark PMoF Design

1

2

2019 Storage Developer Conference. © Intel. All Rights Reserved. 13

Shuffle recap

load

load

Input

A HDFS file

load
sort

Output

A HDFS file

sort

sort

Intermediate Data

Each Map’s output Shuffle (Random Partition)

2

1

9

1

5

8

2

6

5

2

1

1

2

5

6

5

9

8

1

1

2

2

5

5

6

8

9

9

2

1

8

1

5

6

5

2

https://github.com/intel-hadoop/HiBench/blob/master/sparkbench/micro/src/main/scala/com/intel/sparkbench/micro/ScalaSort.scala

Decompression Compression Decompression Compression

Local

Local

Local

Write Local, can use shuffle service to cache the data.

Read Remote via Network

https://github.com/intel-hadoop/HiBench/blob/master/sparkbench/micro/src/main/scala/com/intel/sparkbench/micro/ScalaSort.scala

2019 Storage Developer Conference. © Intel. All Rights Reserved. 14

Spark Shuffle Bottlenecks – Disk

▪ Spark Shuffle (nWeight – a Graph Computation Workload)

▪ Context: Iterative graph-parallel algorithm, implemented with GraphX, to compute the association for 2

vertices in 2-3 hops distance in the graph. (e.g. recommend a video for my friends’ friends)

▪ H/W Configuration: 1+4 cluster / E5 2680 v2@2.8GHz / 192GB DDR3 1600 MHz / 11 HDD, 11 SSD, 1

PCI-E SSD (P3600)

▪ S/W Configuration: Redhat 6.2 / Spark 1.4.1 / Hadoop 2.5.0-CDH5.3.2/Scala 2.10.4

▪ Benchmark Analysis:
Significant IO bottleneck in Shuffle

Shuffle Phase

2019 Storage Developer Conference. © Intel. All Rights Reserved. 15

Spark-PMoF design

▪ A new Spark Shuffle Manager (based on Spark 2.3)

▪ Efficient PMDK Java wrapper.
▪ Leverage PMDK (libpmemobj) for write

▪ ensure data consistency

▪ Failover
▪ support multiple executor processes to get multiple PMEM

namespace in devdax mode and also be able to re-open the same

device when failover

▪ Pmem based external sorter
▪ Support shuffle data spill

▪ Support map side combine

▪ RDMA
▪ Using HPNL (high performance network library) for RDMA

networking

PMDK: libpmemobj

Persistent Memory RNIC

HPNL

PMoF Shuffle Manager

JNI

https://github.com/Intel-bigdata/Spark-PMoF
https://github.com/Intel-bigdata/HPNL

2019 Storage Developer Conference. © Intel. All Rights Reserved. 16

HPNL – High performance network library

for bigdata application

▪ Zero-copy approach

▪ Maintain memory pool, no memory copy between HPNL

buffer and application buffer.

▪ Thanks to RDMA, it supports user-space to kernel-space

zero-copy.

▪ Threading model

▪ Implements the Proactor model.

▪ Supports thread binding specific core.

▪ HPNL interface

▪ C++ and Java binding.

▪ Supports RDMA send, receive, remote read semantics.

▪ Pluggable buffer management.

▪ Capable of using persistent memory (devdax for now) as

RDMA region.

▪ Open source

▪ HPNL is open source in Q2, 2019. Server

Demultiplexer

Core

epoll + fi_wait

Client1 Client2 ClientNClient3

Core Core

HPNL interface

CQService CQService CQService EQService

User callback

Buffer mgr.

libfabric

User callback

Buffer mgr.

libfabric

User callback

Buffer mgr.

libfabric

https://github.com/Intel-bigdata/HPNL

2019 Storage Developer Conference. © Intel. All Rights Reserved. 17

Spark-PMoF design

1. Serialize obj to off-heap memory

2. Write to local shuffle dir

3. Read from local shuffle dir

4. Send to remote reader through TCP-IP

➢ Lots of context switch

➢ POSIX buffered read/write on shuffle disk

➢ TCP/IP based socket send for remote shuffle read

Persistent

Memory

Shuffle file

Spark.Local.dir

Shuffle file

Executor JVM #1

User

Kernel

SSD HDD

3

Shuffle write

Shuffle read

2

4

Worker

1. Serialize obj to off-heap memory

2. Persistent to PMEM

3. Read from remote PMEM through RDMA, PMEM

is used as RDMA memory buffer

➢ No context switch

➢ Efficient read/write on PMEM

➢ RDMA read for remote shuffle read

Executor JVM #1

User

Kernel 3

Worker

Shuffle Manager
Shuffle Manager

NIC

Shuffle

Writer

RDMA NICPMEM

Drivers

Shuffle

Reader Byte buffer

1 obj
Heap

Off-heap

Shuffle

Writer(new)

Shuffle

Reader(new)

obj

Byte buffer

1
Heap

Off-heap2

2019 Storage Developer Conference. © Intel. All Rights Reserved. 18

Disk IO traffic in Shuffle map stage

▪ Provision Persistent Memory name

space in advance.

▪ No filesystem involvement.

▪ Serialized data write to off-heap

buffer. Once hit threshold, create a

block via libpmemobj then flush

shuffle data to Persistent Memory.

▪ Append write, only write/read once.

▪ No index file. Metadata and data

are collocated in Persistent

Memory.

▪ Sort in PMEM.

PMEM Shuffle Writer

n x map tasks
KV in memory

PMDK(libpmemobj)

JNI

Partition [0]

Partition [1]

Partition[2]

Partition[n]

Persistent Memory Device

(devdax mode)

2019 Storage Developer Conference. © Intel. All Rights Reserved. 19

Network traffic in Shuffle reduce stage

▪ Use RDMA RMA semantics

to read data in shuffle

reduce stage.

▪ 2+n times network transfer

per task.

▪ Use off-heap memory as

RDMA region on one side,

and Persistent Memory as

RDMA region on the other

side.

▪ Leverage RDMA to achieve

kernel bypass.

task

task
Send request to get blocks’ s

MR (memory region) and

Rkey

Send blocks’ MR and Rkey

RDMA read remote block

data according to MR and

Rkey

Read metadata from

Persistent Memory

Get blocks

data

task

2019 Storage Developer Conference. © Intel. All Rights Reserved. 20

Spark PMoF performance evaluation

2

0

2019 Storage Developer Conference. © Intel. All Rights Reserved. 21

Benchmark configuration

Hadoop NN
Spark Master

1x40Gb NIC

Hadoop DN
Spark Slave

NVMe

HDD PMEM

Workloads
Terasort 600GB
• hibench.spark.master yarn-client
• hibench.yarn.executor.num 12
• yarn.executor.num 12
• hibench.yarn.executor.cores 8
• yarn.executor.cores 8
• spark.shuffle.compress false
• spark.shuffle.spill.compress false
• spark.executor.memory 60g
• spark.executor.memoryoverhead 10G
• spark.driver.memory 80g
• spark.eventLog.compress = false
• spark.executor.extraJavaOptions=-XX:+UseG1GC
• spark.hadoop.yarn.timeline-service.enabled false
• spark.serializer org.apache.spark.serializer.KryoSerializer
• hibench.default.map.parallelism 200
• hibench.default.shuffle.parallelism 1000

Hadoop DN
Spark Slave

NVMe

HDD PMEM

Hadoop DN
Spark Slave

NVMe

HDD PMEM

Shuffle

HDFS

Shuffle Shuffle

HDFS HDFS

3 Node cluster
Hardware:
• Intel® Xeon™ processor Gold 6240 CPU @ 2.60GHz, 384GB Memory
• 1x Mellanox ConnectX-4 40Gb NIC
• Shuffle Devices：

• 1x HDD for shuffle
• 4x 128GB Persistent Memory for shuffle

• 4x 1T NVMe for HDFS
Software:
• Hadoop 2.7
• Spark 2.3
• Fedora 27 with WW26 BKC

2019 Storage Developer Conference. © Intel. All Rights Reserved. 22

Spark PMoF end-to-end time evaluation

▪ Vanilla Spark

▪ Input/output data to HDFS (NVMe)

▪ Shuffle data to local HDD

▪ Spark-PMoF

▪ Input/output data to HDFS (NVMe)

▪ Shuffle data to Spark-PMoF

▪ Spark-PMoF end-to-end time gains: 24.8x.

▪ Persistent Memory provides higher write bandwidth

per node than HDD.

▪ Spark-PMoF shuffle remote read latency gains: 9900x.

▪ PMoF extremely shorten the remote read latency.

▪ PMEM provides higher read bandwidth per node

than HDD.

▪ Optimization headroom

▪ Registering PMEM address as RDMA region is time

consuming.

▪ Need PMEM provisioned on every Spark executor

node.

▪ Currently just support PMEM devdax with RDMA.

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

Vanilla Spark w/ HDD as shuffle device Spark-PMoF

Spark 600GB TeraSort End-to-End Time – Normalized

Result

map stage reduce stage

99000

10

1

10

100

1000

10000

100000

Vanilla Spark w/ HDD as shuffle device Spark-PMoF

Spark 600GB TeraSort Shuffle Read Blocked Time –

Normalized Result

2019 Storage Developer Conference. © Intel. All Rights Reserved. 23

Persistent Memory IO

▪ Deliver up to 4GB/s write bandwidth per

node.

▪ Didn’t hit PMEM theoretical peak write

bandwidth.

▪ Performance was limited by read

bandwidth from HDFS in map stage.

▪ Deliver up to 5GB/s read bandwidth per

node.

▪ Didn’t hit PMEM theoretical peak read

bandwidth.

▪ Performance was limited by sort

operation in reduce stage and write

bandwidth to HDFS.

0

1000

2000

3000

4000

5000

6000

1 1,001 2,001 3,001 4,001 5,001 6,001 7,001

Persistent Memory Read Bandwidth(MB/sec)

metric_3DXP_memory bandwidth read (MB/sec)

(system)

0

1000

2000

3000

4000

1 1,001 2,001 3,001 4,001 5,001 6,001 7,001

Persistent Memory Write Bandwidth

(MB/sec)

metric_3DXP_memory bandwidth write (MB/sec)

(system)

2019 Storage Developer Conference. © Intel. All Rights Reserved. 24

PMoF Memory footprint benefit

0

10

20

30

40

50

60

16g 32g 48g 64g 80g 96g 112g 128g 256g

T
im

e
 (

m
in

)

spark.executor.memory

Spark 700GB TeraSort - End-to-End Time

spark spark-spill-pmem

24

▪ Also enables Spill to persistent memory.

▪ Spark-PMoF significantly reduces memory footprint by

~4.7x under the same performance

▪ 11 GB persistent memory spill with 16 GB DRAM as

executor memory vs 128 GB DRAM as executor

memory

▪ Spark-PMoF shows excellent performance in low

memory environment.

▪ ~1.7x performance benefit for end-to-to time.

▪ ~2.2x performance benefit in reduce stage.

▪ Spark-PMoF optimized:

▪ GC overhead.

▪ Shuffle storage IO overhead (mixed read and write

IO when spill happens).

Low memory point

2019 Storage Developer Conference. © Intel. All Rights Reserved. 25

Spark-PMoF performance summary

▪ PMEM changes the traditional memory/storage hierarchy with high capacity and

high bandwidth. PMoF combines PMEM and RDMA technology to provides high

bandwidth and ultra-low latency for Spark Shuffle.

▪ Spark-PMoF is good:

▪ If you expect high capacity, high bandwidth and low latency Spark Shuffle

solution.

▪ If the Spark Shuffle is DRAM based. Migrating DRAM based shuffle to PMoF

based shuffle is more cost-effective and brings comparable performance

benefit.

▪ Spark-PMoF is not needed:

▪ If the Spark Shuffle is not IO-intensive, disk IO and latency is not the

bottleneck.

2019 Storage Developer Conference. © Intel. All Rights Reserved. 26

PMoF in other scenarios & Next step

2019 Storage Developer Conference. © Intel. All Rights Reserved. 27

External PM Pool for Spark Shuffle

▪ Working on extending Spark-PMoF to Spark Shuffle with RPMP (Remote Persistent

Memory Pool) to solve some of issues addressed before.

▪ Current status

▪ Able to saturate 40GB RDMA NIC, will try100GB RDMA NIC in the near future.

▪ An independent shuffle layer is becoming increasingly important for large CSPs to

deliver consistent latency for critical workloads

Hadoop NN
Spark Master

1x40Gb NIC

Hadoop DN
Spark Slave

NVMe

Hadoop DN
Spark Slave

NVMe

Hadoop DN
Spark Slave

NVMe

HDFS HDFS HDFS

PMEM Pool (RPMP)

1x40Gb NIC

2019 Storage Developer Conference. © Intel. All Rights Reserved. 28

Summary

2019 Storage Developer Conference. © Intel. All Rights Reserved. 29

Summary

▪ A new high performance, low latency In Memory Data Accelerator will be needed

to close the performance gap and improve scale out capabilities

▪ Persistent Memory over Fabrics extending PM new usage mode to new scenarios

▪ Leveraging persistent memory and RDMA, Spark PMoF enables a high

performance, low latency shuffle solution to accelerate spark shuffle, and delivers

24.8x performance improvement for TeraSort compared with traditional HDD

based shuffle and brings three orders of magnitude reduction in shuffle block

ready latency

▪ PMoF components integration to Spark external shuffle services and RL

framework to be explored.

2019 Storage Developer Conference. © Intel. All Rights Reserved. 30

Notices and Disclaimers

▪ No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted

by this document.

▪ Intel disclaims all express and implied warranties, including without limitation, the implied warranties

of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty

arising from course of performance, course of dealing, or usage in trade.

▪ This document contains information on products, services and/or processes in development. All

information provided here is subject to change without notice. Contact your Intel representative to

obtain the latest forecast, schedule, specifications and roadmaps.

▪ The products and services described may contain defects or errors known as errata which may

cause deviations from published specifications. Current characterized errata are available on

request.

▪ Intel, the Intel logo, Xeon, Optane, Optane DC Persistent Memory are trademarks of Intel

Corporation in the U.S. and/or other countries.

▪ *Other names and brands may be claimed as the property of others

▪ © Intel Corporation.

2019 Storage Developer Conference. © Intel. All Rights Reserved. 31

Legal Information: Benchmark and Performance

Disclaimers

▪ Performance results are based on testing as of Feb. 2019 and may not reflect all publicly

available security updates. See configuration disclosure for details. No product can be absolutely

secure.

▪ Software and workloads used in performance tests may have been optimized for performance

only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are

measured using specific computer systems, components, software, operations and functions.

Any change to any of those factors may cause the results to vary. You should consult other

information and performance tests to assist you in fully evaluating your contemplated purchases,

including the performance of that product when combined with other products. For more

information, see Performance Benchmark Test Disclosure.

▪ Configurations: see performance benchmark test configurations.

