
2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 1

Volatile Use of Persistent

Memory

Usha Upadhyayula

Intel Corporation

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 2

Agenda

 Motivation

 Why use persistent memory as volatile
memory

 Exposing persistent memory as volatile
memory

 File-Backed memory

 As a NUMA node

 Call to action

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 3

Motivation

3

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 4

Intel® Optane™ DC Persistent Memory

Operating Modes

• Memory Mode (volatile)
• Data Placement

• Application does not have control over

data placement

• DRAM and Intel® Optane™ DC

Persistent Memory

• Ease of adoption: No Code Changes

• Performance slower than DRAM

• App Direct Mode (persistent)
• Data Placement

• Control over data placement

• Ease of Adoption:

• Need Code Changes

• Native hardware latencies

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 5

Motivation

 Applications need large memory

capacity

 Don’t need persistence

 Need control over data placement

 DRAM and other storage tiers

 Native latencies of persistent

memory

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 6

File-Backed Memory: Using Memory Mapped

Files

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 7

File-Backed Memory

• Memory mapped files

• Requires DAX aware file

system

• XFS, EXT4, NTFS

• Bypasses file system page

cache

• Fastest IO path possible

• No Kernel code or Interrupts

• Code changes required for

Load/Store Access

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 8

Memory Allocation Challenges

 malloc/free don’t work on memory

mapped files

 Improve ease of use

 stdlib like API to allocate memory

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 92019 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Solution: libmemkind

DRAM

Unified Memory Management

High BW

Memory

Intel® Optane™ DC

Persistent Memory

Allocator Familiar API

stdlib like API

Availability

https://github.com/memkindJemalloc 5.0

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 10

libmemkind- How it Works

 PMEM_KIND

 Supports malloc/free
interface

 File-backed

 Temporary file created
& memory mapped on
a persistent memory-
aware file system

 Allocations not persistent

 Temporary file deleted
when the application
exits

 Need simple modifications
to the applications

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 11

Memkind API

 KIND Creation
 Fixed & variable size heap

 Automatic KIND detection
 Static and dynamic KINDs

 Destroy KIND

 KIND HEAP Management
 Allocate

 Free

 Usable size

 Detect KIND

 KIND Configuration Management
 Usage Policy, Set Path, Set Size

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 12

Code Walkthrough

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 13

Create & Allocate from Different KINDs

int main(int argc, char *argv[])

{

struct memkind *pmem_kind = NULL;

memkind_create_pmem(“/mnt/pmem”, PMEM_MAX_SIZE, &pmem_kind);

//allocate in DRAM

char * ptr_default = (char *)memkind_malloc(MEMKIND_DEFAULT, size);

//allocate in file backed “Kind” of memory

char * ptr_pmem = (char *)memkind_malloc(pmem_kind, size);

//Free allocated memory

memkind_free(MEMKIND_DEFAULT, ptr_default);

memkind_free(pmem_kind, ptr_pmem);

memkind_destroy_kind(pmem_kind);

return 0;

}

https://github.com/memkind/memkind/tree/master/examples/pmem_and_default_kind.c

https://github.com/memkind/memkind/tree/master/examples/pmem_and_default_kind.c

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 14

Create with Defined and Unlimited Size

// Create first PMEM partition with specific size

struct memkind *pmem_kind = NULL

err = memkind_create_pmem(/mnt/pmem, PMEM_MAX_SIZE,

&pmem_kind);

// Create second PMEM partition with unlimited size

err = memkind_create_pmem(/mnt/pmem, 0, &pmem_kind_unlimited);

// Destroy both PMEM partitions

err = memkind_destroy_kind(pmem_kind);

err = memkind_destroy_kind(pmem_kind_unlimited);

https://github.com/memkind/memkind/tree/master/examples/pmem_kinds.c

https://github.com/memkind/memkind/tree/master/examples/pmem_kinds.c

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 15

Using KIND Configuration API

// Create new configuration

struct memkind_config *pmem_cfg = memkind_config_new();

memkind_config_set_path(pmem_cfg, "/mnt/pmem/");

memkind_config_set_size(pmem_cfg, 1024 * 1024 * 64);

memkind_config_set_memory_usage_policy(pmem_cfg,

MEMKIND_MEM_USAGE_POLICY_CONSERVATIVE);

// Create pmem_kind with configuration set

memkind_create_pmem_with_config(pmem_cfg, &pmem_kind);

memkind_config_delete(pmem_cfg);

memkind_destroy_kind(pmem_kind);

https://github.com/memkind/memkind/tree/master/examples/pmem_config.c

https://github.com/memkind/memkind/tree/master/examples/pmem_config.c

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 16

Code Samples
File Name Description

pmem_kinds.c Create and destroy PMEM kind with defined or unlimited size.

pmem_malloc.c Allocate memory and the possibility to exceed PMEM kind size.

pmem_malloc_unlimited.c Allocate memory with unlimited kind size.

pmem_usable_size.c View the difference between the expected and the actual allocation size.

pmem_alignment.c Use memkind alignment and how it affects allocations.

pmem_multithreads.c Use multithreading with independent PMEM kinds.

pmem_multithreads_oneki

nd.c

Use multithreading with one main PMEM kind.

pmem_and_default_kind.c Allocate in standard memory and file-backed memory (PMEM kind).

pmem_detect_kind.c: Distinguish allocation from different kinds using the detect kind function.

pmem_config.c Use custom configuration to create PMEM kind.

pmem_free_with_unknown

_kind.c

Allocate in standard memory & file-backed memory (PMEM kind),

and free memory without needing to remember which kind it belongs to.

https://github.com/memkind/memkind/tree/master/examples.

https://github.com/memkind/memkind/tree/master/examples/pmem_kinds.c
https://github.com/memkind/memkind/tree/master/examples/pmem_malloc.c
https://github.com/memkind/memkind/blob/master/examples/pmem_malloc_unlimited.c
https://github.com/memkind/memkind/blob/master/examples/pmem_usable_size.c
https://github.com/memkind/memkind/blob/master/examples/pmem_alignment.c
https://github.com/memkind/memkind/blob/master/examples/pmem_multithreads.c
https://github.com/memkind/memkind/blob/master/examples/pmem_multithreads_onekind
https://github.com/memkind/memkind/blob/master/examples/pmem_and_default_kind.c
https://github.com/memkind/memkind/blob/master/examples/pmem_detect_kind.c
https://github.com/memkind/memkind/blob/master/examples/pmem_config.c
https://github.com/memkind/memkind/blob/master/examples/pmem_free_with_unknown_kind.c

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 17

Libmemkind - Recap

 General purpose library

 Uses jemalloc for memory management

 Provides stdlib like interface

 Uses file-backed memory

 Memory map temp files

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 18

An Efficient & Scalable Cache for Volatile use

of Persistent Memory

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 19

Cache Design Challenges:

Fragmentation & Scalability

 Challenges

 Random memory allocation
sizes

 Long runtime durations

 Large memory capacities

 Problem

 Failure to allocate a contiguous
chunk of memory although the
requested chunk is availble

 Existing solutions
 Compacting GC (Java, .NET)

 Defragmentation (Redis, Apache
Ignite)

 Slab allocation (memcached)

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 20

libvmemcache – Caching Solution for

Large Memory Capacity

 Main Features

 Custom memory allocator
 Extent-based

 Reduces fragmentation

 Control over allocations

 Improves space efficiency

 Buffered LRU
 Delivers scalability

 Works with Large
Memory Capacities

 Uses memory mapped
files

https://github.com/pmem/vmemcache

https://github.com/pmem/vmemcache

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 21

Extent Based Allocation

 Similar to file system
extents
 Extent = contiguous set of

blocks

 Multiple non-contiguous
blocks allocated

 Non-contiguous
allocations appear as a
single allocation

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 22

Cache Design - Buffered LRU

 Added a wait-free
ring-buffer
 buffers the list-move

operations

 List only needs to get
locked only during
eviction or when the
ring-buffer is full.

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 23

Design Aspects: libmemkind vs

libvmemcache

libmemkind (PMEM) libvmemcache

Allocation

Scheme

Dynamic allocator Extent based

Purpose General purpose Key-value store optimized

for large memory

capacities

Fragmentation Apps with random size

allocations/deallocations that

run for a longer period

Minimized

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 24

Cache Design - Lightweight, embeddable,

in-memory caching

VMEMcache *cache = vmemcache_new("/mnt/pmem", VMEMCACHE_MIN_POOL,
VMEMCACHE_MIN_EXTENT, VMEMCACHE_REPLACEMENT_LRU);

const char *key = "foo";
vmemcache_put(cache, key, strlen(key), "bar", sizeof("bar"));

char buf[128];
ssize_t len = vmemcache_get(cache, key, strlen(key),

buf, sizeof(buf), 0, NULL);

vmemcache_delete(cache);

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 25

Libvmemcache - Recap

 libvmemcache

 get/put APIs

 optional replacement policy

 configurable extent size

 Works with terabyte-sized

in-memory workloads

 High space utilization

https://github.com/pmem/vmemcache

https://github.com/pmem/vmemcache

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 26

Persistent Memory as an Extension of

DRAM

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 27

Persistent Memory as DRAM extension

 New feature in Linux* kernel
5.1
 Dev_DAX_KMEM Config

Option

 Binds persistent memory
device to kernel

 Appears as a separate NUMA
node

 libmemkind support
 memkind_malloc with new

static KIND

 MEMKIND_DAX_KMEM

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 28

Call To Action

• Get started with persistent memory programming
• https://github.com/pmem/pmdk

• Libvmemcache

• https://github.com/memkind/memkind

• Learn more about volatile usages
• Accelerate your Apache Spark with Intel® Optane™ DC Persistent

Memory

• Pmem-redis

• Join the development efforts

• pmem.io - http://pmem.io/

• Intel Persistent Memory Developer Zone

• Send us your feedback

Let’s Innovate As a Community

https://github.com/pmem/pmdk
https://github.com/pmem/vmemcache
https://github.com/memkind/memkind
https://www.youtube.com/watch?v=M8uLKHFzm6s&t=794s
https://github.com/pmem/pmem-redis
http://pmem.io/
https://software.intel.com/pmem

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 292019 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Backup

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 30

Cache Design - Scalable replacement policy

 Performance of libvmemcache
was bottlenecked by naïve
implementation of LRU based
on a doubly-linked list.

 With 100st of threads, most of
the time of any request was
spent
waiting on a list lock…

 Locking per-node doesn’t
solve the problem…

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 31

Intel® Optane™ DC Persistent Memory

Operating Modes

APPLICATION

OPTANE PERSISTENT
MEMORY DRAM

APPLICATION

VOLATILE MEMORY POOL

O P T A N E P E R S I S T E N T M E M O R Y

D R A M A S C A C H E

AFFORDABLE & LARGE
VOLATILE MEMORY CAPACITY

LARGE CAPACITY,
PERSISTENT MEMORY

