
2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 1

Volatile Use of Persistent

Memory

Usha Upadhyayula

Intel Corporation

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 2

Agenda

 Motivation

 Why use persistent memory as volatile
memory

 Exposing persistent memory as volatile
memory

 File-Backed memory

 As a NUMA node

 Call to action

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 3

Motivation

3

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 4

Intel® Optane™ DC Persistent Memory

Operating Modes

• Memory Mode (volatile)
• Data Placement

• Application does not have control over

data placement

• DRAM and Intel® Optane™ DC

Persistent Memory

• Ease of adoption: No Code Changes

• Performance slower than DRAM

• App Direct Mode (persistent)
• Data Placement

• Control over data placement

• Ease of Adoption:

• Need Code Changes

• Native hardware latencies

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 5

Motivation

 Applications need large memory

capacity

 Don’t need persistence

 Need control over data placement

 DRAM and other storage tiers

 Native latencies of persistent

memory

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 6

File-Backed Memory: Using Memory Mapped

Files

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 7

File-Backed Memory

• Memory mapped files

• Requires DAX aware file

system

• XFS, EXT4, NTFS

• Bypasses file system page

cache

• Fastest IO path possible

• No Kernel code or Interrupts

• Code changes required for

Load/Store Access

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 8

Memory Allocation Challenges

 malloc/free don’t work on memory

mapped files

 Improve ease of use

 stdlib like API to allocate memory

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 92019 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Solution: libmemkind

DRAM

Unified Memory Management

High BW

Memory

Intel® Optane™ DC

Persistent Memory

Allocator Familiar API

stdlib like API

Availability

https://github.com/memkindJemalloc 5.0

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 10

libmemkind- How it Works

 PMEM_KIND

 Supports malloc/free
interface

 File-backed

 Temporary file created
& memory mapped on
a persistent memory-
aware file system

 Allocations not persistent

 Temporary file deleted
when the application
exits

 Need simple modifications
to the applications

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 11

Memkind API

 KIND Creation
 Fixed & variable size heap

 Automatic KIND detection
 Static and dynamic KINDs

 Destroy KIND

 KIND HEAP Management
 Allocate

 Free

 Usable size

 Detect KIND

 KIND Configuration Management
 Usage Policy, Set Path, Set Size

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 12

Code Walkthrough

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 13

Create & Allocate from Different KINDs

int main(int argc, char *argv[])

{

struct memkind *pmem_kind = NULL;

memkind_create_pmem(“/mnt/pmem”, PMEM_MAX_SIZE, &pmem_kind);

//allocate in DRAM

char * ptr_default = (char *)memkind_malloc(MEMKIND_DEFAULT, size);

//allocate in file backed “Kind” of memory

char * ptr_pmem = (char *)memkind_malloc(pmem_kind, size);

//Free allocated memory

memkind_free(MEMKIND_DEFAULT, ptr_default);

memkind_free(pmem_kind, ptr_pmem);

memkind_destroy_kind(pmem_kind);

return 0;

}

https://github.com/memkind/memkind/tree/master/examples/pmem_and_default_kind.c

https://github.com/memkind/memkind/tree/master/examples/pmem_and_default_kind.c

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 14

Create with Defined and Unlimited Size

// Create first PMEM partition with specific size

struct memkind *pmem_kind = NULL

err = memkind_create_pmem(/mnt/pmem, PMEM_MAX_SIZE,

&pmem_kind);

// Create second PMEM partition with unlimited size

err = memkind_create_pmem(/mnt/pmem, 0, &pmem_kind_unlimited);

// Destroy both PMEM partitions

err = memkind_destroy_kind(pmem_kind);

err = memkind_destroy_kind(pmem_kind_unlimited);

https://github.com/memkind/memkind/tree/master/examples/pmem_kinds.c

https://github.com/memkind/memkind/tree/master/examples/pmem_kinds.c

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 15

Using KIND Configuration API

// Create new configuration

struct memkind_config *pmem_cfg = memkind_config_new();

memkind_config_set_path(pmem_cfg, "/mnt/pmem/");

memkind_config_set_size(pmem_cfg, 1024 * 1024 * 64);

memkind_config_set_memory_usage_policy(pmem_cfg,

MEMKIND_MEM_USAGE_POLICY_CONSERVATIVE);

// Create pmem_kind with configuration set

memkind_create_pmem_with_config(pmem_cfg, &pmem_kind);

memkind_config_delete(pmem_cfg);

memkind_destroy_kind(pmem_kind);

https://github.com/memkind/memkind/tree/master/examples/pmem_config.c

https://github.com/memkind/memkind/tree/master/examples/pmem_config.c

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 16

Code Samples
File Name Description

pmem_kinds.c Create and destroy PMEM kind with defined or unlimited size.

pmem_malloc.c Allocate memory and the possibility to exceed PMEM kind size.

pmem_malloc_unlimited.c Allocate memory with unlimited kind size.

pmem_usable_size.c View the difference between the expected and the actual allocation size.

pmem_alignment.c Use memkind alignment and how it affects allocations.

pmem_multithreads.c Use multithreading with independent PMEM kinds.

pmem_multithreads_oneki

nd.c

Use multithreading with one main PMEM kind.

pmem_and_default_kind.c Allocate in standard memory and file-backed memory (PMEM kind).

pmem_detect_kind.c: Distinguish allocation from different kinds using the detect kind function.

pmem_config.c Use custom configuration to create PMEM kind.

pmem_free_with_unknown

_kind.c

Allocate in standard memory & file-backed memory (PMEM kind),

and free memory without needing to remember which kind it belongs to.

https://github.com/memkind/memkind/tree/master/examples.

https://github.com/memkind/memkind/tree/master/examples/pmem_kinds.c
https://github.com/memkind/memkind/tree/master/examples/pmem_malloc.c
https://github.com/memkind/memkind/blob/master/examples/pmem_malloc_unlimited.c
https://github.com/memkind/memkind/blob/master/examples/pmem_usable_size.c
https://github.com/memkind/memkind/blob/master/examples/pmem_alignment.c
https://github.com/memkind/memkind/blob/master/examples/pmem_multithreads.c
https://github.com/memkind/memkind/blob/master/examples/pmem_multithreads_onekind
https://github.com/memkind/memkind/blob/master/examples/pmem_and_default_kind.c
https://github.com/memkind/memkind/blob/master/examples/pmem_detect_kind.c
https://github.com/memkind/memkind/blob/master/examples/pmem_config.c
https://github.com/memkind/memkind/blob/master/examples/pmem_free_with_unknown_kind.c

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 17

Libmemkind - Recap

 General purpose library

 Uses jemalloc for memory management

 Provides stdlib like interface

 Uses file-backed memory

 Memory map temp files

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 18

An Efficient & Scalable Cache for Volatile use

of Persistent Memory

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 19

Cache Design Challenges:

Fragmentation & Scalability

 Challenges

 Random memory allocation
sizes

 Long runtime durations

 Large memory capacities

 Problem

 Failure to allocate a contiguous
chunk of memory although the
requested chunk is availble

 Existing solutions
 Compacting GC (Java, .NET)

 Defragmentation (Redis, Apache
Ignite)

 Slab allocation (memcached)

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 20

libvmemcache – Caching Solution for

Large Memory Capacity

 Main Features

 Custom memory allocator
 Extent-based

 Reduces fragmentation

 Control over allocations

 Improves space efficiency

 Buffered LRU
 Delivers scalability

 Works with Large
Memory Capacities

 Uses memory mapped
files

https://github.com/pmem/vmemcache

https://github.com/pmem/vmemcache

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 21

Extent Based Allocation

 Similar to file system
extents
 Extent = contiguous set of

blocks

 Multiple non-contiguous
blocks allocated

 Non-contiguous
allocations appear as a
single allocation

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 22

Cache Design - Buffered LRU

 Added a wait-free
ring-buffer
 buffers the list-move

operations

 List only needs to get
locked only during
eviction or when the
ring-buffer is full.

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 23

Design Aspects: libmemkind vs

libvmemcache

libmemkind (PMEM) libvmemcache

Allocation

Scheme

Dynamic allocator Extent based

Purpose General purpose Key-value store optimized

for large memory

capacities

Fragmentation Apps with random size

allocations/deallocations that

run for a longer period

Minimized

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 24

Cache Design - Lightweight, embeddable,

in-memory caching

VMEMcache *cache = vmemcache_new("/mnt/pmem", VMEMCACHE_MIN_POOL,
VMEMCACHE_MIN_EXTENT, VMEMCACHE_REPLACEMENT_LRU);

const char *key = "foo";
vmemcache_put(cache, key, strlen(key), "bar", sizeof("bar"));

char buf[128];
ssize_t len = vmemcache_get(cache, key, strlen(key),

buf, sizeof(buf), 0, NULL);

vmemcache_delete(cache);

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 25

Libvmemcache - Recap

 libvmemcache

 get/put APIs

 optional replacement policy

 configurable extent size

 Works with terabyte-sized

in-memory workloads

 High space utilization

https://github.com/pmem/vmemcache

https://github.com/pmem/vmemcache

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 26

Persistent Memory as an Extension of

DRAM

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 27

Persistent Memory as DRAM extension

 New feature in Linux* kernel
5.1
 Dev_DAX_KMEM Config

Option

 Binds persistent memory
device to kernel

 Appears as a separate NUMA
node

 libmemkind support
 memkind_malloc with new

static KIND

 MEMKIND_DAX_KMEM

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 28

Call To Action

• Get started with persistent memory programming
• https://github.com/pmem/pmdk

• Libvmemcache

• https://github.com/memkind/memkind

• Learn more about volatile usages
• Accelerate your Apache Spark with Intel® Optane™ DC Persistent

Memory

• Pmem-redis

• Join the development efforts

• pmem.io - http://pmem.io/

• Intel Persistent Memory Developer Zone

• Send us your feedback

Let’s Innovate As a Community

https://github.com/pmem/pmdk
https://github.com/pmem/vmemcache
https://github.com/memkind/memkind
https://www.youtube.com/watch?v=M8uLKHFzm6s&t=794s
https://github.com/pmem/pmem-redis
http://pmem.io/
https://software.intel.com/pmem

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 292019 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Backup

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 30

Cache Design - Scalable replacement policy

 Performance of libvmemcache
was bottlenecked by naïve
implementation of LRU based
on a doubly-linked list.

 With 100st of threads, most of
the time of any request was
spent
waiting on a list lock…

 Locking per-node doesn’t
solve the problem…

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved. 31

Intel® Optane™ DC Persistent Memory

Operating Modes

APPLICATION

OPTANE PERSISTENT
MEMORY DRAM

APPLICATION

VOLATILE MEMORY POOL

O P T A N E P E R S I S T E N T M E M O R Y

D R A M A S C A C H E

AFFORDABLE & LARGE
VOLATILE MEMORY CAPACITY

LARGE CAPACITY,
PERSISTENT MEMORY

