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Agenda

 Motivation

 Why use persistent memory as volatile 
memory

 Exposing persistent memory as volatile 
memory

 File-Backed memory

 As a NUMA node

 Call to action
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Intel® Optane™ DC Persistent Memory 

Operating Modes

• Memory  Mode (volatile)
• Data Placement

• Application does not have control over 

data placement 

• DRAM and Intel® Optane™ DC 

Persistent Memory 

• Ease of adoption: No Code Changes

• Performance slower than DRAM

• App Direct Mode (persistent)
• Data Placement

• Control over data placement

• Ease of Adoption: 

• Need Code Changes

• Native hardware latencies
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Motivation

 Applications need large memory 

capacity

 Don’t need persistence

 Need control over data placement 

 DRAM and other storage tiers

 Native latencies of persistent 

memory
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File-Backed Memory: Using Memory Mapped 

Files
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File-Backed Memory

• Memory mapped files

• Requires DAX aware file 

system

• XFS, EXT4, NTFS

• Bypasses file system page 

cache

• Fastest IO path possible

• No Kernel code or Interrupts

• Code changes required for 

Load/Store Access
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Memory Allocation Challenges

 malloc/free don’t work on memory 

mapped files

 Improve ease of use

 stdlib like API to allocate memory
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Solution: libmemkind

DRAM

Unified Memory Management

High BW 

Memory

Intel® Optane™ DC 

Persistent Memory

Allocator Familiar API

stdlib like API 

Availability

https://github.com/memkindJemalloc 5.0
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libmemkind- How it Works

 PMEM_KIND

 Supports malloc/free 
interface

 File-backed

 Temporary file created 
& memory mapped on 
a persistent memory-
aware file system

 Allocations not persistent

 Temporary file deleted 
when the application 
exits

 Need simple modifications 
to the applications
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Memkind API

 KIND Creation
 Fixed & variable size heap

 Automatic KIND detection
 Static and dynamic KINDs

 Destroy KIND 

 KIND HEAP Management
 Allocate

 Free

 Usable size

 Detect KIND

 KIND Configuration Management
 Usage Policy, Set Path, Set Size
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Code Walkthrough
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Create & Allocate from Different KINDs 

int main(int argc, char *argv[])

{

struct memkind *pmem_kind = NULL;

memkind_create_pmem(“/mnt/pmem”, PMEM_MAX_SIZE, &pmem_kind);

//allocate in DRAM

char * ptr_default = (char *)memkind_malloc(MEMKIND_DEFAULT, size);  

//allocate in file backed “Kind” of memory

char * ptr_pmem = (char *)memkind_malloc(pmem_kind, size);

//Free allocated memory

memkind_free(MEMKIND_DEFAULT, ptr_default);

memkind_free(pmem_kind, ptr_pmem);

memkind_destroy_kind(pmem_kind);

return 0;

}

https://github.com/memkind/memkind/tree/master/examples/pmem_and_default_kind.c

https://github.com/memkind/memkind/tree/master/examples/pmem_and_default_kind.c
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Create with Defined and Unlimited Size

// Create first PMEM partition with specific size

struct memkind *pmem_kind = NULL 

err = memkind_create_pmem(/mnt/pmem, PMEM_MAX_SIZE, 

&pmem_kind);

// Create second PMEM partition with unlimited size

err = memkind_create_pmem(/mnt/pmem, 0, &pmem_kind_unlimited);

// Destroy both PMEM partitions

err = memkind_destroy_kind(pmem_kind);

err = memkind_destroy_kind(pmem_kind_unlimited);

https://github.com/memkind/memkind/tree/master/examples/pmem_kinds.c

https://github.com/memkind/memkind/tree/master/examples/pmem_kinds.c
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Using KIND Configuration API 

// Create new configuration

struct memkind_config *pmem_cfg = memkind_config_new();

memkind_config_set_path(pmem_cfg, "/mnt/pmem/");

memkind_config_set_size(pmem_cfg, 1024 * 1024 * 64);

memkind_config_set_memory_usage_policy(pmem_cfg, 

MEMKIND_MEM_USAGE_POLICY_CONSERVATIVE);

// Create pmem_kind with configuration set

memkind_create_pmem_with_config(pmem_cfg, &pmem_kind);

memkind_config_delete(pmem_cfg);

memkind_destroy_kind(pmem_kind);

https://github.com/memkind/memkind/tree/master/examples/pmem_config.c

https://github.com/memkind/memkind/tree/master/examples/pmem_config.c
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Code Samples
File Name Description

pmem_kinds.c Create and destroy PMEM kind with defined or unlimited size.

pmem_malloc.c Allocate memory and the possibility to exceed PMEM kind size.

pmem_malloc_unlimited.c Allocate memory with unlimited kind size.

pmem_usable_size.c View the difference between the expected and the actual allocation size.

pmem_alignment.c Use memkind alignment and how it affects allocations.

pmem_multithreads.c Use multithreading with independent PMEM kinds.

pmem_multithreads_oneki

nd.c

Use multithreading with one main PMEM kind.

pmem_and_default_kind.c Allocate in standard memory and file-backed memory (PMEM kind).

pmem_detect_kind.c: Distinguish allocation from different kinds using the detect kind function.

pmem_config.c Use custom configuration to create PMEM kind.

pmem_free_with_unknown

_kind.c

Allocate in standard memory & file-backed memory (PMEM kind),

and free memory without needing to remember which kind it belongs to.

https://github.com/memkind/memkind/tree/master/examples.

https://github.com/memkind/memkind/tree/master/examples/pmem_kinds.c
https://github.com/memkind/memkind/tree/master/examples/pmem_malloc.c
https://github.com/memkind/memkind/blob/master/examples/pmem_malloc_unlimited.c
https://github.com/memkind/memkind/blob/master/examples/pmem_usable_size.c
https://github.com/memkind/memkind/blob/master/examples/pmem_alignment.c
https://github.com/memkind/memkind/blob/master/examples/pmem_multithreads.c
https://github.com/memkind/memkind/blob/master/examples/pmem_multithreads_onekind
https://github.com/memkind/memkind/blob/master/examples/pmem_and_default_kind.c
https://github.com/memkind/memkind/blob/master/examples/pmem_detect_kind.c
https://github.com/memkind/memkind/blob/master/examples/pmem_config.c
https://github.com/memkind/memkind/blob/master/examples/pmem_free_with_unknown_kind.c
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Libmemkind - Recap

 General purpose library

 Uses jemalloc for memory management

 Provides stdlib like interface

 Uses file-backed memory 

 Memory map temp files
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An Efficient & Scalable Cache for Volatile use 

of Persistent Memory
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Cache Design Challenges: 

Fragmentation & Scalability

 Challenges

 Random memory allocation 
sizes

 Long runtime durations

 Large memory capacities

 Problem

 Failure to allocate a contiguous 
chunk of memory although the 
requested chunk is availble

 Existing solutions
 Compacting GC (Java, .NET)

 Defragmentation (Redis, Apache 
Ignite)

 Slab allocation (memcached)
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libvmemcache – Caching Solution for 

Large Memory Capacity

 Main Features

 Custom memory allocator
 Extent-based 

 Reduces fragmentation

 Control over allocations

 Improves space efficiency

 Buffered LRU
 Delivers scalability

 Works with Large 
Memory Capacities

 Uses memory mapped 
files

https://github.com/pmem/vmemcache

https://github.com/pmem/vmemcache
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Extent Based Allocation

 Similar to file system 
extents
 Extent = contiguous set of 

blocks

 Multiple non-contiguous 
blocks allocated 

 Non-contiguous 
allocations appear as a 
single allocation
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Cache Design - Buffered LRU

 Added a wait-free 
ring-buffer 
 buffers the list-move 

operations

 List only needs to get 
locked only during 
eviction or when the 
ring-buffer is full.
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Design Aspects: libmemkind vs 

libvmemcache

libmemkind (PMEM) libvmemcache

Allocation 

Scheme

Dynamic allocator Extent based

Purpose General purpose Key-value store optimized

for large memory 

capacities

Fragmentation Apps with random size 

allocations/deallocations that 

run for a longer period

Minimized
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Cache Design - Lightweight, embeddable, 

in-memory caching 

VMEMcache *cache = vmemcache_new("/mnt/pmem", VMEMCACHE_MIN_POOL, 
VMEMCACHE_MIN_EXTENT, VMEMCACHE_REPLACEMENT_LRU);

const char *key = "foo";
vmemcache_put(cache, key, strlen(key), "bar", sizeof("bar"));

char buf[128];
ssize_t len = vmemcache_get(cache, key, strlen(key),

buf, sizeof(buf), 0, NULL);

vmemcache_delete(cache);
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Libvmemcache - Recap

 libvmemcache

 get/put APIs

 optional replacement policy

 configurable extent size

 Works with terabyte-sized 

in-memory workloads 

 High space utilization

https://github.com/pmem/vmemcache

https://github.com/pmem/vmemcache
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Persistent Memory as an Extension of 

DRAM
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Persistent Memory as DRAM extension

 New feature in Linux* kernel 
5.1
 Dev_DAX_KMEM Config

Option

 Binds persistent memory 
device to kernel

 Appears as a separate NUMA 
node

 libmemkind support
 memkind_malloc with new 

static KIND

 MEMKIND_DAX_KMEM
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Call To Action

• Get started with persistent memory programming
• https://github.com/pmem/pmdk

• Libvmemcache

• https://github.com/memkind/memkind

• Learn more about volatile usages
• Accelerate your Apache Spark with Intel® Optane™ DC Persistent 

Memory

• Pmem-redis

• Join the development efforts

• pmem.io - http://pmem.io/

• Intel Persistent Memory Developer Zone

• Send us your feedback

Let’s Innovate As a Community

https://github.com/pmem/pmdk
https://github.com/pmem/vmemcache
https://github.com/memkind/memkind
https://www.youtube.com/watch?v=M8uLKHFzm6s&t=794s
https://github.com/pmem/pmem-redis
http://pmem.io/
https://software.intel.com/pmem
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Backup
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Cache Design - Scalable replacement policy

 Performance of libvmemcache 
was bottlenecked by naïve 
implementation of LRU based 
on a doubly-linked list.

 With 100st of threads, most of 
the time of any request was 
spent
waiting on a list lock…

 Locking per-node doesn’t 
solve the problem…
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Intel® Optane™ DC Persistent Memory 

Operating Modes

APPLICATION

OPTANE PERSISTENT 
MEMORY DRAM

APPLICATION

VOLATILE MEMORY POOL

O P T A N E  P E R S I S T E N T  M E M O R Y

D R A M  A S  C A C H E

AFFORDABLE & LARGE 
VOLATILE MEMORY CAPACITY

LARGE CAPACITY,  
PERSISTENT MEMORY


