September 23-26, 2019
Santa Clara, CA

SDC

Volatile Use of Persistent
Memory

Usha Upadhyayula <

Intel Corporation

3
V.

\

N

s

NN YN

VAN

AV
\V;

AN

\

\

/N

JAN

A\

N/

AVAR

&

\

NN/
ANANAN //<\

I INCINNC T T 7777)

L ININCINONIN S L 7 7 S T 7 S

NANAVAVAVARNAN
LYY S\ N\

INONNINCININC L T 7 /T 7 7 7 7

N7/

/OO SAALAS LSS

Agenda

= Motivation

= Why use persistent memory as volatile
memory

« EXposing persistent memory as volatile
memory

» File-Backed memory

= As a NUMA node
= Call to action

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved.

MOTIVATION

Intel® Optane™ DC Persistent Memory %
Operating Modes

C

« Memory Mode (volatile) App Direct Mode (persistent)
« Data Placement « Data Placement
* Application does not have control over - Control over data placement
data placement « Ease of Adoption:
« DRAM and Intel® Optane™ DC * Need Code Changes

Persistent Memory Native hardware latencies
« Ease of adoption: No Code Changes

 Performance slower than DRAM
MEMORY MODE

APP DIRECT

APPLICATION APPLICATION

!]

—

Rights Reserved.

Motivation

Applications need large memory
capacity

Don’t need persistence
Need control over data placement
« DRAM and other storage tiers

Native latencies of persistent
memory

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved.

-

File-Backed Memory: Using Mem\wé Mapp
SES

File-Backed Memory

Memory mapped files
 Requires DAX aware file { Application
system %
« XFS, EXT4, NTFS
- Bypasses file system page | e |
CaChe Persistent memory aware

file system

Fastest 10 path possible
 No Kernel code or Interrupts

Code changes required for "~ Memory |
Mapped

Load/Store Access region

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved.

Memory Allocation Challenges

« malloc/free don’t work on memory
mapped files

= Improve ease of use
= stdlib like API to allocate memory

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved.

Solution: libmemkind SDC

Unified Memory Management

Intel® Optane™ DC
Persistent Memory

Allocator Familiar API Availability
Jemalios 5.0 St ke AP

2019 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

libmemkind- How 1t Works

PMEM_KIND

= Supports malloc/free
interface

File-backed

« Temporary file created
& memory mapped on
a persistent memory-
aware file system

Allocations not persistent

« Temporary file deleted
when the application
exits

Need simple modifications
to the applications

2019 Storage Developer Conference. © Intel® Corporation.

Libmemkind

Application

Persistent memory aware
file system

Memory . .
Mapped
region

All Rights Reserved.

Memkind API

= KIND Creation

» Fixed & variable size heap

= Automatic KIND detection
« Static and dynamic KINDs

= Destroy KIND

« KIND HEAP Management
= Allocate
= Free
= Usable size
= Detect KIND

« KIND Configuration Management
= Usage Policy, Set Path, Set Size

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved.

-

Code Walkthrough \/

Create & Allocate from Different KINDS K2

int main(int argc, char *argv[])
{
struct memkind *pmem_kind = NULL,;
memkind_create_pmem(“/mnt/pmem”, PMEM_MAX_SIZE, &pmem_kind);
//allocate in DRAM
char * ptr_default = (char *)memkind_malloc(, Size);
/[allocate in file backed “Kind” of memory
char * ptr_pmem = (char *)memkind_malloc(, Size);
/[Free allocated memory
memkind_free(MEMKIND_DEFAULT, ptr_default);
memkind_free(pmem_kind, ptr_pmem);
memkind_destroy kind(pmem_kind);
return O;

}

https://github.com/memkind/memkind/tree/master/examples/pmem and default kind.c

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved.

https://github.com/memkind/memkind/tree/master/examples/pmem_and_default_kind.c

Create with Defined and Unlimited Size

Il Create first PMEM partition with specific size

struct memkind *pmem_kind = NULL

err = memkind_create_pmem(/mnt/pmem, PMEM_MAX_SIZE,
&pmem_kind);

I/l Create second PMEM partition with unlimited size

err = memkind_create_pmem(/mnt/pmem, 0, &pmem_kind_unlimited);
I/l Destroy both PMEM partitions

err = memkind_destroy_kind(pmem_kind);

err = memkind_destroy_kind(pmem_kind_unlimited);

https://github.com/memkind/memkind/tree/master/examples/pmem kinds.c

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved.

https://github.com/memkind/memkind/tree/master/examples/pmem_kinds.c

Using KIND Configuration API

/I Create new configuration

struct memkind_config *pmem_cfg = memkind config_new();
memkind config _set path(pmem_cfg, "/mnt/pmem/");
memkind config_set size(pmem_cfg, 1024 * 1024 * 64),

memkind_config_set_memory _usage_policy(pmem_cfg,
MEMKIND MEM_USAGE_POLICY_ CONSERVATIVE);

I/l Create pmem_kind with configuration set

memkind create pmem with config(pmem_cfg, &pmem_Kkind);
memkind_ config delete(pmem_cfg);

memkind destroy kind(pmem_kind);

https://github.com/memkind/memkind/tree/master/examples/pmem config.c

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved.

https://github.com/memkind/memkind/tree/master/examples/pmem_config.c

Code Samples

Create and destroy PMEM kind with defined or unlimited size.

File Name

Allocate memory and the possibility to exceed PMEM kind size.
Allocate memory with unlimited kind size.

View the difference between the expected and the actual allocation size.
Use memkind alignment and how it affects allocations.

Use multithreading with independent PMEM kinds.

Use multithreading with one main PMEM kind.

Allocate in standard memory and file-backed memory (PMEM kind).

Distinguish allocation from different kinds using the detect kind function.

Use custom configuration to create PMEM kind.

Allocate in standard memory & file-backed memory (PMEM kind),

and free memory without needing to remember which kind it belongs to.

https://github.com/memkind/memkind/tree/master/examples.

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved.

https://github.com/memkind/memkind/tree/master/examples/pmem_kinds.c
https://github.com/memkind/memkind/tree/master/examples/pmem_malloc.c
https://github.com/memkind/memkind/blob/master/examples/pmem_malloc_unlimited.c
https://github.com/memkind/memkind/blob/master/examples/pmem_usable_size.c
https://github.com/memkind/memkind/blob/master/examples/pmem_alignment.c
https://github.com/memkind/memkind/blob/master/examples/pmem_multithreads.c
https://github.com/memkind/memkind/blob/master/examples/pmem_multithreads_onekind
https://github.com/memkind/memkind/blob/master/examples/pmem_and_default_kind.c
https://github.com/memkind/memkind/blob/master/examples/pmem_detect_kind.c
https://github.com/memkind/memkind/blob/master/examples/pmem_config.c
https://github.com/memkind/memkind/blob/master/examples/pmem_free_with_unknown_kind.c

Libmemkind - Recap

General purpose library

Uses jemalloc for memory management
Provides stdlib like interface

Uses file-backed memory

« Memory map temp files

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved.

VA /
[JAVAN

-

An Efficient & Scalable Cache foMlatile u
of Persistent Memory

Cache Design Challenges:
Fragmentation & Scalability

= Challenges
= Random memory allocation

: A =malloc(128); 0 64 128 192 256 320 384
SIZzes B = malloc(128);
- Long runtime durations s
= Large memory capacities e
- PrObIe_m | 0 64 128 192 256 320 384
= Failure to allocate a contiguous f'r’::((é))
chunk of memory although the ' . .
requested chunk is availble e _
- Existing solutions 0 64 128 102 256 320 384
= Compacting GC (Java, .NET) malloc(256);
= Defragmentation (Redis, Apache
Ignite) NULL (errno == ENOMEM)

= Slab allocation (memcached)

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved.

libvmemcache — Caching Solution for
Large Memory Capacity

- Main Features ‘ Application

« Custom memory allocator

= Extent-based
= Reduces fragmentation

= Control over allocations -

= |mpr0VGS Space efﬁCiency Persistent memory aware

file system

= Buffered LRU

= Delivers scalability

= Works with Large
Memory Capacities

« Uses memory mapped
files

2019 Storage Developer Conference. © Intel® Corporatiol https //q Ith u b . CO m/D m e mlvm e m CaCh e

https://github.com/pmem/vmemcache

Extent Based Allocation

= Similar to file system
extents
= Extent = contiguous set of
blocks
= Multiple non-contiguous
blocks allocated

= Non-contiguous
allocations appear as a
single allocation

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved.

A=malloc{128);
B = malloc(128);
C =malloc(128),

free(A);
free(C),

D = malloc(256);

0 G4 128 192 256 320 384
F i Kl
A B C
| . e A
0 G4 128 192 256 320 384
B
I {
0 G4 128 192 256 320 384
next
| — — v
D B D
.. .. A
G4 128 192 256 320 384

cache entry

Cache Design - Buffered LRU

» Added a walit-free
ring-buffer

= puffers the list-move
operations

= List only needs to get
locked only during

eviction or when the
ring-buffer is full.

LEAST
USED

LEAST
USED

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved.

A B C
List entry < > List entry = > List entry
Walue Value Value

ait-free ring buffer
get(B)
A m c
List entry < > List entry & > List entry
Value Value

ait-free ring buffer

Design Aspects: libmemkind vs
libvmemcache

| libmemkind (PMEM)

A elerz1ilels B Dynamic allocator Extent based
Scheme

Purpose General purpose Key-value store optimized
for large memory
capacities
SElnlEhiEieliiSApps with random size Minimized
allocations/deallocations that

run for a longer period

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved.

Cache Design - Lightweight, embeddable,
In-memory caching

VMEMcache *cache = vmemcache_new("/mnt/pmem", VMEMCACHE MIN POOL,
VMEMCACHE_MIN_ EXTENT, VMEMCACHE REPLACEMENT LRU);

const char *key = "foo";
vmemcache put(cache, key, strlen(key), "bar", sizeof("bar"));

char buf[128];
ssize t len = vmemcache get(cache, key, strlen(key),
buf, sizeof(buf), 0, NULL);

vmemcache delete(cache);

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved.

Libvmemcache - Recap

= libvmemcache Unmodified SQL

. getjput APIs Spark SQOL Unchanged Spark
= optional replacement policy

= configurable extent size ‘
n Works W|th terabyte S|Zed VMEMCACHE Abstract away hardware details and cache implementation

In-memory workloads
] y . i Expose persistent memory as memory-mapped files (DAX)
« High space utilization *

0AP Provide scheduler and fine gain cache based on Data Source AP|

Intel® Optane™ DC Persistent Memory Module

https://github.com/pmem/vmemcache

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved.

https://github.com/pmem/vmemcache

-

Persistent Memory as an Ex%ey/sion of
DRAM

Persistent Memory as DRAM extension

= New feature in Linux* kernel libmemkind
5 . 1 Application i-gfﬁgi"‘
- Dev_DAX_KMEM Config DRICKHER .

Option
= Binds persistent memory
device to kernel
« Appears as a separate NUMA
node
= libmemkind support

« memkind_malloc with new
static KIND

= MEMKIND_DAX_KMEM

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved.

Call To Action

Get started with persistent memory programming
« https://github.com/pmem/pmdk
 Libvmemcache
* https://github.com/memkind/memkind
Learn more about volatile usages
» Accelerate your Apache Spark with Intel® Optane™ DC Persistent

Memory
« Pmem-redis

Join the development efforts

* pmem.io - http://pmem.io/

 Intel Persistent Memory Developer Zone
Send us your feedback

Let’s Innovate As a Community

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved.

https://github.com/pmem/pmdk
https://github.com/pmem/vmemcache
https://github.com/memkind/memkind
https://www.youtube.com/watch?v=M8uLKHFzm6s&t=794s
https://github.com/pmem/pmem-redis
http://pmem.io/
https://software.intel.com/pmem

Backup oA

2019 Storage Developer Conference. © Insert Your Company Name. All Rights Reserved.

Performance of libvmemcache

was bottlenecked by naive SELE LU T
implementation of LRU based | ™
on a doubly-linked list.

With 100st of threads, most of get(B)

the time of any request was

S p e. r.]t . Listzntry Listintr}.r ListEIentry

waiting on a list lock.... o - - | L e
Locking per-node doesn't

solve the problem...

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved.

A

=

These three nodes

must be locked!

Intel® Optane™ DC Persistent Memory %
Operating Modes

C

APP DIRECT

MEMORY MODE

APPLICATION APPLICATION

|
=

1 i
1 OPTANE PERSISTENT MEMORY I
e o o o o e e

AFFORDABLE & LARGE LARGE CAPACITY,
VOLATILE MEMORY CAPACITY PERSISTENT MEMORY

2019 Storage Developer Conference. © Intel® Corporation. All Rights Reserved.

