

September 23-26, 2019 Santa Clara, CA

SAS Rules the Data Center

Cameron Brett President, SCSI Trade Association

Director of Marketing, SSD and Storage Solutions, Toshiba Memory America, Inc.

SAS Remains Primary Enterprise Storage Interface

– Santa Clara, C*i*

Source: IDC, May 2019

2

SD[®]

SAS Infrastructure Enables >64% of Enterprise Storage Drives and >80% of Enterprise Storage Capacity thru 2023

SAS Enterprise Architecture

Storage Area Network

SCSI Trade Association

3

SD[®]

OCP Hyperscale Design Example #1

Wiwynn Honeybadger 12Gb/s SAS Storage Server

- Designed to support up to 30 SAS HDDs in a 2U chassis
- Based on Facebook's Open Vault Storage Hardware specification

5

SD 🕑

OCP Hyperscale Design Example #2

Wiwynn Bryce Canyon 12Gb/s SAS Storage Server

- Designed to support up to 72 hot-pluggable SAS HDDs
- Based on Facebook's Storage System specification

6

SD 🕑

OCP Hyperscale Bryce Canyon Design SD@

2019 Storage Developer Conference. © SCSI Trade Association. All Rights Reserved.

9

SAS Infrastructure Supports Diverse Workloads

			Key Performance Metrics								
Application/ Use Case	Workload Characteristic	Storage Requirements	Sm SR	Lg SR	Sm SW	Lg SW	Sm RR	Lg RR	Sm RW	Lg RW	Storage Performance Objective
Machine Learning	Large highly parallel reads	Direct Attached SATA									Ability to process large amounts of data, mostly read operations
Sensor, Radar & Signal Processing	Small highly parallel writes	Direct Attached SAS									Ability to ingest large amounts of unprocessed sensor/signal inputs
Financial Trading	Very small parallel writes & check pointing operations	Direct Attached SAS									Minimize logging time & checkpoint operations
Transactional Databases	High intensity random reads & writes. Sequential log writes	RAID: SATA/SAS									Maximize random I/O performance
File + App Services	80% Read/20% Write (OLTP), Varying sizes, Sequential log writes	RAID: SATA/SAS									Manage a high number of small random requests & effective cache utilization
OLAP & ETL (Business Intelligence)	Large reads followed by ad- hoc queries of small random reads	raid: sata/sas									Provide high read bandwidth for quick ETL's & high IOPs for fast business queries

10

SAS Infrastructure Supports Diverse Workloads (cont'd)

SD©

			Key Performance Metrics							
Workload	Workload Characteristic	Storage Requirements	Sm SR				Sm RR			Storage Performance Objective
Medical Imaging	Large sequential reads and writes	raid: sata/sas								Provide high bandwidth for large writes to storage. Read bandwidth for image access
Content Management	Large sequential reads/writes, meta-data indexing, random content access	Raid: Sata/Sas								Provide high read & write bandwidth for large content movement. Also support a large number of concurrent random file reads and writes.
Big Data	Large sequential reads and writes	Direct Attached SATA/SAS								Provide high bandwidth reads and writes to complete operations
Software Defined Storage	Application dependent. Primarily random workloads	Direct Attached SATA/SAS								High random IOPs needed to support broad range of SDS based workloads
Backup/Disaster Recovery	Large sequential reads and writes	RAID: SATA/SAS								Provide high bandwidth reads and writes to complete operations and comply with SLA obligation
Analytics / Data Mining	Highly parallel random reads	RAID: SATA/SAS								High IOPs and read bandwidth to maximize completions of complex and real time queries.

2019 Storage Developer Conference. © SCSI Trade Association. All Rights Reserved.

24G SAS Highlights

Physical Layer Enhancements

Protocol & Block Level Enhancements

SD @

SAS takes advantage of these new drive technologies

2019 Storage Developer Conference. © SCSI Trade Association. All Rights Reserved.

2019 Storage Developer Conference. © SCSI Trade Association. All Rights Reserved.

de Association

Summary Comparison of a Typical Drive Deployment

SAS **NVMe**[™] **SATA** Performance (IOPS, GB/s) Best (x4 lanes) Better (x1 lane) Good Performance Better Best Good (Read Latency ¹) Good Better Scalability Best (*Better w/ NVMe-oF™) (SAS infrastructure) Best Good Better Flexibility (SAS, SATA, HDDs, (SSDs) (SSDs. HDDs) SSDs) Manageability and Hot Plug² Better (SAS infra) Best (most mature) Good (recent spec) Best Good Reliability Better Highest System cost Higher Lowest (performance premium) Roadmap future Long-term Long-term Limited

¹ Latency includes OS, driver, HBA (if required) and flight time, media access times not included

² includes surprise hot plug and managed hot plug

2019 Storage Developer Conference. © SCSI Trade Association. All Rights Reserved.

SCSI Command Set is Pervasive

- SCSI protocol is a highly robust command set used in highperformance workstations, servers, and storage appliances
- Industry-proven SCSI command set implemented by other storage interfaces, including:

16

24G SAS Ecosystem Readiness in 2020

- Ecosystem is on track for SAS-4 production readiness in 2020
 - SAS-4 analyzers have been sampling since last year

Cables and connectors: both existing and new form-factors ready for 24G
 SAS

SlimSAS

 SAS-4 controllers and expanders aligned with upcoming Gen4 platform launches

SAS MiniLink

- New HDD/SSD capabilities to intersect with 24G SAS ecosystem
 - MultiLink SSDs
 - Hybrid SMR
- Multiple Actuator
 HAMR / MAMR

Mini SAS HD

