A Quantum Leap: NVMe over Fabrics with Fibre Channel, FC-NVMe2

Craig W. Carlson
Senior Technologist
Marvell

Rupin Mohan
Director R&D, CTO (SAN)
Hewlett Packard Enterprise
About the presenter

- Presented by: Craig W. Carlson
 - Senior Technologist, Marvell
 - Member of SNIA Technical Council
 - Chair of FC-NVMe working group within T11
 - Vice Chair T11 Fibre Channel
 - Chair T11.3 Committee on Fibre Channel Protocols
 - FCIA Board Member
 - NVMe Board Member
Agenda

- FC-NVMe-2
- Why Use FC-NVMe?
- 128GFC
- FCIA Roadmap
- Summary
FC-NMVe REFRESHER
FC-NVMe

- **Design Goals**
 - Comply with NVMe over Fabrics Spec
 - High Performance/Low Latency
 - Use existing HBA and Switch hardware
 - Don’t want to require new ASICs to be spun to support FC-NVMe
 - Fit into the existing FC infrastructure as much as possible, with very little real-time software management
 - Maintain Fibre Channel Fabric Services
 - Name Server
 - Zoning
 - Management
Performance

- The Goal of High Performance/Low Latency
 - Means that FC–NVMe needs to use an existing hardware accelerated data transfer protocol
 - Use FCP as the data transfer protocol
 - Currently both SCSI and FC-SB (FICON) use FCP for data transfers
 - FCP is deployed as hardware accelerated
 - Like FC, FCP is a connectionless protocol
 - Any FCP based protocols provide a way of creating a “connection”, or association between participating ports
FC-NVMe STATUS
FC-NVMe Standards and Partner Update

- FC-NVMe Standard (T11) ratified on 8/10/2017
- Use existing FC HBA and FC switch hardware
 - Co-existence of FCP SCSI and FC-NVMe traffic
- Performance:
 - Demonstrated low latency & high performance
- Availability
 - Linux based host drivers available now
- FC-NVMe-2 Started development spring ’18
 - Focusing on Enhanced Error Recovery
- FC-NVMe-2 Currently in approval phase
FC-NVMe Ecosystem Readiness

<table>
<thead>
<tr>
<th>Element</th>
<th>FC-NVMe Support Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC Switches</td>
<td>Available today
Note: Just ensure you right the right F/W version that supports FC-NVMe</td>
</tr>
<tr>
<td>HBAs</td>
<td>Host Side:
• Linux Unified Driver available for download today
Target Side:
• User mode (SPDK), Kernel mode - alpha drivers available today
• FW available today</td>
</tr>
<tr>
<td>Operating Systems</td>
<td>Linux Community and OS Vendors:
• SLES12SP3, RHEL7.5 support FC-NVMe (Tech Preview) today
• SLES12SP4/SLES15, RHEL7.6 support FC-NVMe GA Q3/Q4, 2018
• VMware and Microsoft – engaged</td>
</tr>
<tr>
<td>Storage</td>
<td>Multiple vendors to support 2H 2018</td>
</tr>
</tbody>
</table>
The next step

- The big new item in FC-NVMe-2 is Enhanced Error Recovery
- Allows errors (missing or corrupt frames) to be detected and recovered at the transport layer before the protocol layer knows anything was amiss
- I thought it was reliable?
 - Bit errors do happen
 - Actual bit errors tend to be much lower than theoretical occurrences
 - Software/hardware errors can also lead to frame loss
What causes Bit Errors

Cosmic Rays from the sun and other sources.

Studies by IBM in the 1990s suggest that computers typically experience about one cosmic-ray-induced error per 256 megabytes of RAM per month.

Radiation from local environment

For modern chips care must be taken to minimize radiation from components

RF and power line noise from local equipment

Even changing generators at local power company can induce low frequency noise
What causes Bit Errors

Software/hardware bugs

Need I say more?

Common specified Bit Error Rate is 10^{-12} to 10^{-15}

Actual bit error rate is often much better, but with theoretical rate, bits could occur multiple times per hour
How did this work before?

- Limited Error Recovery on the link
 - Low level error detection
 - FEC (Forward Error Correction) on high speed links
- Protocol Level Error Recovery
 - Both SCSI and NVMe have their own recovery mechanisms
Enhanced Error Recovery

- **Goal**
 - Don’t let the protocol layer see any errors
 - Don’t want to rely on protocol level error recovery

- **Enhanced Error Recovery**
 - Detect and recover from errors before they reach the protocol layer
 - Protocol layer doesn’t even know anything happened
More details on Enhanced Error Recovery

- Error recovery takes place at FC Frame level
 - Missing frames timeout and are retransmitted
 - Defined new FC-NVMe services and FC Basic Link Services for fast recovery
- Protocol layer does not know anything happened
New Basic Link Services
- FLUSH
- RED

New FC-NVMe IUs
- NVMe_SR
- New FLUSH BLS defined
 - (A BLS – Basic Link Service – is a low level Fibre Channel command frame)
 - Used to determine if a command is still active
 - Can be used to detect lost frames so that error recovery can start
New RED BLS Defined

- RED (Responder Error Detected) – Used by the recipient of a command to indicate that an error has been detected
- Allows a receiver to indicate that error recovery should be initiated
New NVMe_SR IU defined

(An IU – Information Unit - is part of the basic command structure of FCP)

Tells the recipient to retransmit a command or data
Detailed NVMe Command Loss Example

Host
- Read
 - FLUSH Timeout

Initiator
- NVMe_CMND
 - FLUSH
 - FLUSH_RSP
 - NVMe_CMND

Target
- Command is lost
 - After timeout FLUSH Is sent
 - Flush response indicates lost command
 - Command resent
Detailed Lost NVMe Response example

<table>
<thead>
<tr>
<th>Host</th>
<th>Initiator</th>
<th>Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flush</td>
<td>NVMe_CMND</td>
<td>Command response is lost</td>
</tr>
<tr>
<td>FLUSH</td>
<td>FLUSH</td>
<td>After timeout FLUSH is sent</td>
</tr>
<tr>
<td></td>
<td>FLUSH_RSP</td>
<td>Flush response indicates lost command response</td>
</tr>
<tr>
<td></td>
<td>NVMe_SR</td>
<td>NVMe_SR requests response retry</td>
</tr>
<tr>
<td></td>
<td>NVMe_SR_RSP</td>
<td>Command response is resent</td>
</tr>
</tbody>
</table>
Lost Read Data frame example

Host	Initiator	Target
Read	NVMe_CMND	
	NVMe_DATA(1)	Data frame 1 is lost
	NVMe_DATA(2)	
	FLUSH	FLUSH is sent
	FLUSH_RSP	Flush response indicates lost data frame
	NVMe_SR	NVMe_SR requests Data resend
	NVMe_SR_RSP	
	NVMe_DATA(1)	Data is resent
	NVMe_DATA(2)	Data frame 2 is received with no preceding data frame 1
Lost Write Data frame example

Host	Initiator	Target
Write	NVMe_CMND	NVMe_XFER_RDY
NVMe_DATA(1)	NVMe_DATA(2)	
FLUSH Timeout waiting on response		
NVMe_SR	FLUSH_RSP	
NVMe_XFER_RDY	NVMe_DATA(1)	
NVMe_DATA(2)	Data resend	

Last data frame 2 is lost

Flush response indicates lost data frame

Data is resent
RED BLS example

- **Host**
- **Initiator**
- **Target**

- Write
 - NVMe_CMND
 - NVMe_XFER_RDY
 - NVMe_DATA(1)
 - NVMe_DATA(2)
 - RED
 - NVMe_SR
 - NVMe_SR_RSP
 - NVMe_XFER_RDY
 - NVMe_DATA(1)
 - NVMe_DATA(2)

- First data frame is lost
- Receipt of 2nd data frame triggers RED BLS
- NVMe_SR requests Data resend
- Data is resent
Error Recovery Summary

- Goal is to recover from errors without upper level knowing anything happened
 - Recovery in 2 seconds or less
- This is going to be increasingly important as link speeds go up
- Starting with FC-NVMe and applying to SCSI FCP
ROADMAP UPDATE
Fibre Channel Physical Standards

- Fibre Channel physical layers defined in FC-PI series of Standards
 - Encoding and Protocol layers defined based on FC-FS series of standards
- Most Recent Standard ratified is FC-PI-7 – 64GFC
- Development has started on FC-PI-8 – 128GFC

<table>
<thead>
<tr>
<th>Document</th>
<th>Represents...</th>
</tr>
</thead>
</table>
| FC-PI | 1GFC
2GFC
4GFC |
| FC-PI-2 | 4GFC |
| FC-PI-4 | 8GFC |
| FC-PI-5 | 16GFC |
| FC-PI-6 | 32GFC |
| FC-PI-6P | 128GFC (parallel) |
| FC-PI-7 | 64GFC |
| FC-PI-7P | 256GFC (parallel) |
| FC-PI-8 | 128GFC |
| FC-PI-8P | 512GFC (parallel) |
FCIA Roadmap

<table>
<thead>
<tr>
<th>Product Naming</th>
<th>Throughput (Mbytes/s)</th>
<th>Line Rate (Gbaud)</th>
<th>T11 Specification Technically Complete (Year)*</th>
<th>Market Availability (Year)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1GFC</td>
<td>200</td>
<td>1.0625</td>
<td>1996</td>
<td>1997</td>
</tr>
<tr>
<td>2GFC</td>
<td>400</td>
<td>2.125</td>
<td>2000</td>
<td>2001</td>
</tr>
<tr>
<td>4GFC</td>
<td>800</td>
<td>4.25</td>
<td>2003</td>
<td>2005</td>
</tr>
<tr>
<td>8GFC</td>
<td>1,600</td>
<td>8.5</td>
<td>2006</td>
<td>2008</td>
</tr>
<tr>
<td>32GFC</td>
<td>6,400</td>
<td>28.05</td>
<td>2013</td>
<td>2016</td>
</tr>
<tr>
<td>128GFC</td>
<td>25,600</td>
<td>4X28.05</td>
<td>2014</td>
<td>2016</td>
</tr>
<tr>
<td>64GFC</td>
<td>12,800</td>
<td>28.9 PAM-4 (57.8Gb/s)</td>
<td>2017</td>
<td>2019</td>
</tr>
<tr>
<td>256GFC</td>
<td>51,200</td>
<td>4X28.9 PAM-4 (4X57.8Gb/s)</td>
<td>2017</td>
<td>2019</td>
</tr>
<tr>
<td>128GFC</td>
<td>25,600</td>
<td>TBD</td>
<td>2020</td>
<td>Market Demand</td>
</tr>
<tr>
<td>256GFC</td>
<td>51,200</td>
<td>TBD</td>
<td>2023</td>
<td>Market Demand</td>
</tr>
<tr>
<td>512GFC</td>
<td>102,400</td>
<td>TBD</td>
<td>2026</td>
<td>Market Demand</td>
</tr>
<tr>
<td>1TFC</td>
<td>204,800</td>
<td>TBD</td>
<td>2029</td>
<td>Market Demand</td>
</tr>
</tbody>
</table>
Signaling Rate Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Signaling rate</th>
<th>Number of Lanes</th>
<th>Data rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1GFC</td>
<td>1.0625 MBd</td>
<td>1</td>
<td>100 MB/s</td>
</tr>
<tr>
<td>2GFC</td>
<td>2.125 MBd</td>
<td>1</td>
<td>200 MB/s</td>
</tr>
<tr>
<td>4GFC</td>
<td>4.250 MBd</td>
<td>1</td>
<td>400 MB/s</td>
</tr>
<tr>
<td>8GFC</td>
<td>8.500 MBd</td>
<td>1</td>
<td>800 MB/s</td>
</tr>
<tr>
<td>16GFC</td>
<td>14.025 MBd</td>
<td>1</td>
<td>1600 MB/s</td>
</tr>
<tr>
<td>32GFC</td>
<td>28.050 MBd</td>
<td>1</td>
<td>3200 MB/s</td>
</tr>
<tr>
<td>64GFC</td>
<td>28.900 MBd</td>
<td>1</td>
<td>6400 MB/s</td>
</tr>
<tr>
<td>128GFC</td>
<td>112.200 MBd</td>
<td>1 or 4</td>
<td>12800 MB/s</td>
</tr>
<tr>
<td>256GFC</td>
<td>115.600 MBd</td>
<td>4</td>
<td>25600 MB/s</td>
</tr>
</tbody>
</table>

MB/s = Megabytes per second

MBd = Megabaud per second
Just Completed...

- FC-PI-7 (64GFC) ratified mid 2018
- 64GFC had to be backward compatible to 32GFC and 16GFC.
 - Backward compatibility and “plug and play” to utilize existing infrastructure with new speeds is always a must have for FC development.
- Existing cable assemblies must plug into 64GFC capable products
 - LC (connector) and SFP+ (form factor)
- Reach goals
 - 100 meters for multi-mode short reach optical variant using OM4/OM5 cable plants
 - OM4 optical fibre has a higher optical bandwidth than OM3 fibre which leads to longer reach at a given speed.
 - 10KM for single mode optical variant
 - Electrical variant for backplane applications
- 64GFC will double the throughput of 32GFC
- Corrected bit-error-rate (BER) target of 1e-15
 - Advanced bit error recovery achieved through FEC
Forward Error Correction for 64GFC

- Forward Error Correction (FEC) is mandatory for all types of 64GFC links
- Transmitter encodes the data stream in a redundant way using an error correcting code
- 64GFC uses a block code called Reed Solomon.
 - 64GFC uses RS(544,514)
 - Allows correction of single bit errors or burst errors for 15 ten-bit symbols out of 5140 bits sent
- 64GFC uses terms such as uncorrected BER which is the minimum BER to be expected pre-FEC encoding/decoding
 - Uncorrected BER is 1e-04 range or lower
 - FEC-corrected BER is 1e-15 range or lower
 - These numbers help identify the usefulness of FEC in making 64GFC links robust

Forward Error Correction (FEC)

A set of algorithms that perform corrections that allow for recovery of one or more bit errors

- SNIA Dictionary
256GFC (Parallel Four Lane)

- FC-PI-7P will describe a four lane 64GFC variant that has a throughput of 256GFC (4x64GFC)
 - Standard currently in development
- Data striped across the four lanes
- MRD requested the following variants
 - 100m on multi-mode cable OM4/OM5
 - 2km single mode variant
- Backward compatibility with 128GFC (4x32GFC) is also a requirement
128GFC FC-PI-8 Planned Requirements

- Backward compatible to 64GFC and 32GFC
- Same external connectors as 32/64GFC
- Existing cable assemblies will work with 128GFC
- Multi-mode cable plant reach is 100 meters on OM4/OM5
- Single mode cable plant reach of 10KM
- 128GFC links should double the throughput in MB/sec of 64GFC links
- Corrected BER target of 1e-15
- Reduce latency of 64GFC by up to 20%
- A four lane parallel 512GFC is also planned
WHY USE FC-NVMe?
Top 6 Reasons FC-NVMe Might Be The Right Choice

1. Leverage existing dedicated Storage Network (SAN)
2. Run NVMe and SCSI Side-by-Side
3. Robust and battle-hardened discovery and name service
4. Zoning and Security
5. Integrated Qualification and Support
6. With FC-NVMe-2 Industry leading error detection/recovery
SUMMARY
FC-NVMe

- Wicked Fast!
- Builds on 20 years of the most robust storage network experience
- Can be run side-by-side with existing SCSI-based Fibre Channel storage environments
- Inherits all the benefits of Discovery and Name Services from Fibre Channel
- Capitalizes on trusted, end-to-end Qualification and Interoperability matrices in the industry
More Info

- **FCIA**
 - www.fibrechannel.org

- **Contacts**
 - cwcarlson@marvell.com
 - rupin.mohan@hpe.com
Thank you!