
2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 1

Average Storage Latency is
Lacking. Let’s Fix It!

Richard Elling
Viking Enterprise Solutions
a Division of Sanmina Corporation

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 2

The Problem

Storage system latency does not have a normal
distribution
 HDDs seek & rotate
 Flash SSDs garbage collection
 Fabrics
 Ordering & Re-ordering
 Multiple, serial queues
 Error recovery and retry

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 3

Flash SSD Latency Anomaly

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 4

Ordering Problem

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 5

Popular Tools: iostat

$ iostat -x
Linux 4.15.0-13-generic (elvis) 09/13/2019 _x86_64_ (3 CPU)
…
Device r/s w/s rkB/s wkB/s rrqm/s wrqm/s %rrqm %wrqm r_await w_await aqu-sz rareq-sz wareq-sz svctm %util
sda 0.35 0.26 3.53 10.47 0.07 0.62 16.38 70.24 0.76 14.33 0.00 10.17 40.10 0.43 0.03
…

Note: ignore Linux svctm, it is broken

$ iostat -o
disk0 disk2 cpu load average

sps tps msps sps tps msps us sy id 1m 5m 15m
3092 177 0.0 1042 10 0.0 7 6 87 1.46 1.89 1.93

Ubuntu

OSX

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 6

Linux /proc/diskstats
cat /proc/diskstats
…
8 0 sda 94376 18486 1919722 71620 70919 167617 5696296 1017520 0 71476 1102048

…

Field Description Field Description

1 major number 8 # of writes completed

2 minor number 9 # of writes merged

3 device name 10 # of sectors written

4 # of completed reads 11 # of milliseconds spent writing

5 # of reads merged 12 # of I/Os in progress

6 # of sectors read 13 # of milliseconds spent doing I/Os

7 # of milliseconds spent reading 14 weighted # of milliseconds spent doing I/Os

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 7

Popular Tools: prometheus

Node 1
node_exporter

other agents

Node 2
node_exporter

other agents

Node 3
telegraf

other agents

prometheus grafana

pull

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 8

prometheus Example

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 9

Sampling: dtrace

 Dynamic Tracing (dtrace)
 Ported from Solaris to FreeBSD

and OSX
 Halfway ported to OEL, see BPF

for another path forward

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 10

dtrace Latency Example

cat iolatency.d
#!/usr/sbin/dtrace -s

io:::start
{

start[arg0] = timestamp;
}

io:::done
/start[arg0]/
{

@time["disk I/O latency (ns)"] = quantize(timestamp - start[arg0]);
start[arg0] = 0;

}

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 11

dtrace Latency Example
./iolatency.d
dtrace: script './iolatency.d' matched 2 probes
^C

disk I/O latency (ns)
value ------------- Distribution ------------- count
32768 | 0
65536 | 94

131072 |@@ 361
262144 |@@@@@@@@@@@@@@@@@@@@@@ 4349
524288 |@@@@@@@@ 1617
1048576 |@@ 366
2097152 |@ 178
4194304 |@ 197
8388608 |@ 296

16777216 |@@ 313
33554432 |@ 273
67108864 | 34

134217728 | 0
268435456 | 2
536870912 | 0

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 12

Sampling: BPF

 No complete port of dtrace to Linux, so…
 Berkeley Packet Filter (BPF) meets the

Linux kernel
 Also known as extended BPF (eBPF)

 Similar to dtrace, systemtap, and friends
 Vibrant community with many good

scripts to learn from and adapt
www.iovisor.org/technology/ebpf

http://www.iovisor.org/technology/ebpf

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 13

2 Good Ideas: eBPF_exporter

 Descibe eBPF as YAML
 ebpf_exporter deamon

 reads YAML
 runs BPF
 results are available to prometheus

 Use to sample latency distributions on almost
anything… userland or kernel

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 14

Samplers Aren’t Perfect

 When the going gets tough, samplers are
adversely affected
 Can miss samples
 Can commit suicide (protect the system)

 Require elevated roles -- may conflict with
production security policies

 Can impact overall performance

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 15

Good idea: use samplers for debug and
prototyping then add useful latency

distributions in the code

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 16

Exemplar: chrome
Try it! chrome://histograms

Histogram: Event.Latency.OS.MOUSE_WHEEL recorded 18505 samples, mean = 1176.9 (flags = 0x41)
0 ...

258 O (1 = 0.0%) {0.0%}
340 -O (52 = 0.3%) {0.0%}
448 -----------------------------------O (2524 = 13.6%) {0.3%}
590 --O (4909 = 26.5%) {13.9%}
777 --O (5178 = 28.0%) {40.5%}

1023 -------------------------------O (2234 = 12.1%) {68.4%}
1347 -----------O (763 = 4.1%) {80.5%}
1774 ----------O (684 = 3.7%) {84.6%}
2336 -------------O (931 = 5.0%) {88.3%}
3077 --------------O (987 = 5.3%) {93.4%}
4053 ---O (194 = 1.0%) {98.7%}
5338 O (21 = 0.1%) {99.7%}
7031 O (14 = 0.1%) {99.9%}
9260 O (7 = 0.0%) {99.9%}

12196 O (2 = 0.0%) {100.0%}
16063 O (1 = 0.0%) {100.0%}
21156 O (0 = 0.0%) {100.0%}
27864 O (3 = 0.0%) {100.0%}
36699 ...

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 17

Realities of Kernel

 chrome is cool, but javascript uses float64
 Number.MAX_SAFE_INTEGER (253 -1)
 Number.MIN_SAFE_INTEGER (-(253 – 1))

 Kernels tend to only do integer math
 Integer math is more CPU efficient
 Many performance counters are uint64

 elapsed nanoseconds * # of I/Os = big number

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 18

Example: ZFSonLinux
zpool iostat -w

testpool total_wait disk_wait syncq_wait asyncq_wait
latency read write read write read write read write scrub trim
---------- ----- ----- ----- ----- ----- ----- ----- ----- ----- -----
1ns 0 0 0 0 0 0 0 0 0 0
…
2us 0 0 0 0 37 31 0 36 2 0
4us 0 0 0 0 33 25 0 117 39 0
8us 0 0 0 0 7 6 0 11 16 0
16us 0 0 0 0 1 0 0 6 2 0
32us 0 0 0 0 1 0 0 7 5 0
65us 0 0 0 0 0 0 0 20 4 0
131us 6 7 6 31 2 0 0 30 2 0
262us 23 73 25 381 2 0 0 47 8 0
524us 36 158 44 465 0 0 0 88 21 0
1ms 40 194 56 187 0 0 0 143 37 0
2ms 48 282 65 57 0 0 0 242 33 0
4ms 56 320 99 9 0 0 0 267 50 0
8ms 94 96 41 7 0 0 0 58 40 0
16ms 30 8 6 1 0 0 0 4 5 0
33ms 9 0 5 0 0 0 0 0 6 0
…

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 19

Choosing Buckets

 Simplest and fastest is log2

 ok for storage or many orders of magnitude
 sometimes more precision is desired

 Linear
 ok when range is 1 or 2 orders of magnitude
 division is 10-40x slower than addition/subtraction
 range checking can cause branches (slow)

 Log-linear
 mix of log10 with 10 buckets per decade
 slower than linear, but good resolution

 Natural log
 floating point – not suitable for kernel

uint64_t elapsed = NOW() - start;
bucket = 64 - __builtin_clzll(elapsed); // 64 – count leading zeroes

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 20

Arrays of Buckets

 Simplest implementation is a global array for latency buckets
 used by OpenZFS
 can lead to cache line stalls – measure instructions per cycle

(IPC)
 can be space efficient
 for consistency, use atomics – but IPC can suffer

 Better implementation is one array per processor
 eliminates cache line stalls = better IPC
 no need for atomics
 requires reader to sum across processors

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 21

Gotchas

 Getting time can be expensive
 uint64_t counters are convenient in kernel, but some

tools, like prometheus, only support float64 values
 In-flight requests can’t be easily measured

 requests that do not complete have no end time
 Most iostat implementations are for HDDs

 lack resolution for SSDs

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 22

One More Thing…

If you can do only one more thing…
… at least add a latency threshold counter
 Pick a (tunable) unexpected large latency threshold

value
 Increment a counter when latency exceeds the

threshold
 Make the counter accessible to instrumentation tools

(node_exporter, telegraf, et.al.)

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 23

Conclusion

 Average latencies are readily available, but are lacking in
information

 Latency histograms can reveal latency problems
 Samplers can measure elapsed time between function

calls or function entry/return
 But samplers are not suitable for running continuously
 Better solution is to collect latency histograms in kernel

modules or applications
 We can do this! Let’s do it!

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 24

Thanks

Richard.Elling@VikingEntperise.com

	Average Storage Latency is Lacking. Let’s Fix It!
	The Problem
	Flash SSD Latency Anomaly
	Ordering Problem
	Popular Tools: iostat
	Linux /proc/diskstats
	Popular Tools: prometheus
	prometheus Example
	Sampling: dtrace
	dtrace Latency Example
	dtrace Latency Example
	Sampling: BPF
	2 Good Ideas: eBPF_exporter
	Samplers Aren’t Perfect
	Good idea: use samplers for debug and prototyping then add useful latency distributions in the code
	Exemplar: chrome
	Realities of Kernel
	Example: ZFSonLinux
	Choosing Buckets
	Arrays of Buckets
	Gotchas
	One More Thing…
	Conclusion
	Thanks��Richard.Elling@VikingEntperise.com

