
2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 1

Average Storage Latency is
Lacking. Let’s Fix It!

Richard Elling
Viking Enterprise Solutions
a Division of Sanmina Corporation

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 2

The Problem

Storage system latency does not have a normal
distribution
 HDDs seek & rotate
 Flash SSDs garbage collection
 Fabrics
 Ordering & Re-ordering
 Multiple, serial queues
 Error recovery and retry

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 3

Flash SSD Latency Anomaly

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 4

Ordering Problem

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 5

Popular Tools: iostat

$ iostat -x
Linux 4.15.0-13-generic (elvis) 09/13/2019 _x86_64_ (3 CPU)
…
Device r/s w/s rkB/s wkB/s rrqm/s wrqm/s %rrqm %wrqm r_await w_await aqu-sz rareq-sz wareq-sz svctm %util
sda 0.35 0.26 3.53 10.47 0.07 0.62 16.38 70.24 0.76 14.33 0.00 10.17 40.10 0.43 0.03
…

Note: ignore Linux svctm, it is broken

$ iostat -o
disk0 disk2 cpu load average

sps tps msps sps tps msps us sy id 1m 5m 15m
3092 177 0.0 1042 10 0.0 7 6 87 1.46 1.89 1.93

Ubuntu

OSX

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 6

Linux /proc/diskstats
cat /proc/diskstats
…
8 0 sda 94376 18486 1919722 71620 70919 167617 5696296 1017520 0 71476 1102048

…

Field Description Field Description

1 major number 8 # of writes completed

2 minor number 9 # of writes merged

3 device name 10 # of sectors written

4 # of completed reads 11 # of milliseconds spent writing

5 # of reads merged 12 # of I/Os in progress

6 # of sectors read 13 # of milliseconds spent doing I/Os

7 # of milliseconds spent reading 14 weighted # of milliseconds spent doing I/Os

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 7

Popular Tools: prometheus

Node 1
node_exporter

other agents

Node 2
node_exporter

other agents

Node 3
telegraf

other agents

prometheus grafana

pull

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 8

prometheus Example

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 9

Sampling: dtrace

 Dynamic Tracing (dtrace)
 Ported from Solaris to FreeBSD

and OSX
 Halfway ported to OEL, see BPF

for another path forward

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 10

dtrace Latency Example

cat iolatency.d
#!/usr/sbin/dtrace -s

io:::start
{

start[arg0] = timestamp;
}

io:::done
/start[arg0]/
{

@time["disk I/O latency (ns)"] = quantize(timestamp - start[arg0]);
start[arg0] = 0;

}

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 11

dtrace Latency Example
./iolatency.d
dtrace: script './iolatency.d' matched 2 probes
^C

disk I/O latency (ns)
value ------------- Distribution ------------- count
32768 | 0
65536 | 94

131072 |@@ 361
262144 |@@@@@@@@@@@@@@@@@@@@@@ 4349
524288 |@@@@@@@@ 1617
1048576 |@@ 366
2097152 |@ 178
4194304 |@ 197
8388608 |@ 296

16777216 |@@ 313
33554432 |@ 273
67108864 | 34

134217728 | 0
268435456 | 2
536870912 | 0

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 12

Sampling: BPF

 No complete port of dtrace to Linux, so…
 Berkeley Packet Filter (BPF) meets the

Linux kernel
 Also known as extended BPF (eBPF)

 Similar to dtrace, systemtap, and friends
 Vibrant community with many good

scripts to learn from and adapt
www.iovisor.org/technology/ebpf

http://www.iovisor.org/technology/ebpf

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 13

2 Good Ideas: eBPF_exporter

 Descibe eBPF as YAML
 ebpf_exporter deamon

 reads YAML
 runs BPF
 results are available to prometheus

 Use to sample latency distributions on almost
anything… userland or kernel

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 14

Samplers Aren’t Perfect

 When the going gets tough, samplers are
adversely affected
 Can miss samples
 Can commit suicide (protect the system)

 Require elevated roles -- may conflict with
production security policies

 Can impact overall performance

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 15

Good idea: use samplers for debug and
prototyping then add useful latency

distributions in the code

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 16

Exemplar: chrome
Try it! chrome://histograms

Histogram: Event.Latency.OS.MOUSE_WHEEL recorded 18505 samples, mean = 1176.9 (flags = 0x41)
0 ...

258 O (1 = 0.0%) {0.0%}
340 -O (52 = 0.3%) {0.0%}
448 -----------------------------------O (2524 = 13.6%) {0.3%}
590 --O (4909 = 26.5%) {13.9%}
777 --O (5178 = 28.0%) {40.5%}

1023 -------------------------------O (2234 = 12.1%) {68.4%}
1347 -----------O (763 = 4.1%) {80.5%}
1774 ----------O (684 = 3.7%) {84.6%}
2336 -------------O (931 = 5.0%) {88.3%}
3077 --------------O (987 = 5.3%) {93.4%}
4053 ---O (194 = 1.0%) {98.7%}
5338 O (21 = 0.1%) {99.7%}
7031 O (14 = 0.1%) {99.9%}
9260 O (7 = 0.0%) {99.9%}

12196 O (2 = 0.0%) {100.0%}
16063 O (1 = 0.0%) {100.0%}
21156 O (0 = 0.0%) {100.0%}
27864 O (3 = 0.0%) {100.0%}
36699 ...

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 17

Realities of Kernel

 chrome is cool, but javascript uses float64
 Number.MAX_SAFE_INTEGER (253 -1)
 Number.MIN_SAFE_INTEGER (-(253 – 1))

 Kernels tend to only do integer math
 Integer math is more CPU efficient
 Many performance counters are uint64

 elapsed nanoseconds * # of I/Os = big number

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 18

Example: ZFSonLinux
zpool iostat -w

testpool total_wait disk_wait syncq_wait asyncq_wait
latency read write read write read write read write scrub trim
---------- ----- ----- ----- ----- ----- ----- ----- ----- ----- -----
1ns 0 0 0 0 0 0 0 0 0 0
…
2us 0 0 0 0 37 31 0 36 2 0
4us 0 0 0 0 33 25 0 117 39 0
8us 0 0 0 0 7 6 0 11 16 0
16us 0 0 0 0 1 0 0 6 2 0
32us 0 0 0 0 1 0 0 7 5 0
65us 0 0 0 0 0 0 0 20 4 0
131us 6 7 6 31 2 0 0 30 2 0
262us 23 73 25 381 2 0 0 47 8 0
524us 36 158 44 465 0 0 0 88 21 0
1ms 40 194 56 187 0 0 0 143 37 0
2ms 48 282 65 57 0 0 0 242 33 0
4ms 56 320 99 9 0 0 0 267 50 0
8ms 94 96 41 7 0 0 0 58 40 0
16ms 30 8 6 1 0 0 0 4 5 0
33ms 9 0 5 0 0 0 0 0 6 0
…

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 19

Choosing Buckets

 Simplest and fastest is log2

 ok for storage or many orders of magnitude
 sometimes more precision is desired

 Linear
 ok when range is 1 or 2 orders of magnitude
 division is 10-40x slower than addition/subtraction
 range checking can cause branches (slow)

 Log-linear
 mix of log10 with 10 buckets per decade
 slower than linear, but good resolution

 Natural log
 floating point – not suitable for kernel

uint64_t elapsed = NOW() - start;
bucket = 64 - __builtin_clzll(elapsed); // 64 – count leading zeroes

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 20

Arrays of Buckets

 Simplest implementation is a global array for latency buckets
 used by OpenZFS
 can lead to cache line stalls – measure instructions per cycle

(IPC)
 can be space efficient
 for consistency, use atomics – but IPC can suffer

 Better implementation is one array per processor
 eliminates cache line stalls = better IPC
 no need for atomics
 requires reader to sum across processors

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 21

Gotchas

 Getting time can be expensive
 uint64_t counters are convenient in kernel, but some

tools, like prometheus, only support float64 values
 In-flight requests can’t be easily measured

 requests that do not complete have no end time
 Most iostat implementations are for HDDs

 lack resolution for SSDs

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 22

One More Thing…

If you can do only one more thing…
… at least add a latency threshold counter
 Pick a (tunable) unexpected large latency threshold

value
 Increment a counter when latency exceeds the

threshold
 Make the counter accessible to instrumentation tools

(node_exporter, telegraf, et.al.)

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 23

Conclusion

 Average latencies are readily available, but are lacking in
information

 Latency histograms can reveal latency problems
 Samplers can measure elapsed time between function

calls or function entry/return
 But samplers are not suitable for running continuously
 Better solution is to collect latency histograms in kernel

modules or applications
 We can do this! Let’s do it!

2019 Storage Developer Conference. © Viking Enterprise Solutions a Division of Sanmina Corporation 24

Thanks

Richard.Elling@VikingEntperise.com

	Average Storage Latency is Lacking. Let’s Fix It!
	The Problem
	Flash SSD Latency Anomaly
	Ordering Problem
	Popular Tools: iostat
	Linux /proc/diskstats
	Popular Tools: prometheus
	prometheus Example
	Sampling: dtrace
	dtrace Latency Example
	dtrace Latency Example
	Sampling: BPF
	2 Good Ideas: eBPF_exporter
	Samplers Aren’t Perfect
	Good idea: use samplers for debug and prototyping then add useful latency distributions in the code
	Exemplar: chrome
	Realities of Kernel
	Example: ZFSonLinux
	Choosing Buckets
	Arrays of Buckets
	Gotchas
	One More Thing…
	Conclusion
	Thanks��Richard.Elling@VikingEntperise.com

