
1 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Virtual Conference
September 28-29, 2021

A Event

Kanchan Joshi
Samsung Semiconductor
India Research
(SSIR)

SelvaKumar S
Samsung Semiconductor
India Research
(SSIR)

Towards Copy-Offload in
Linux NVMe
Presented by

2 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Foreword & Acknowledgement

This has elements that are under discussion in LKML
 Mechanism, Opcode, API etc. may change in future

The work captured here is a community effort
 Feedback on the current plumbing have come from many

developers – Damien, Bart, Derrick, Martin to name a few

3 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Agenda

Copy – and issues around it
Remedial measures (OS + Storage)
Copy-offload Interface: SCSI
Copy-offload Interface: NVMe
Where we are: Linux Kernel support update
Next steps

4 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Copying data, and costs that’re out there

 Copy has traditionally been a composite
operation
 Pull from source + Push to destination
 Perhaps the most infallible way, across

heterogeneous storage backend
 Costs

 Expensive on resources
 Host CPU is involved, and CPU caches too
 Host RAM is utilized; may evict other data
 DMA resources

 When source is same as destination, round-trip is
particularly inefficient

 Gets worse, when over fabrics/network
 Saturates network
 Breaks data locality; movements between storage-node and

compute-node
 The farther the storage is from application, the longer it

takes for round-trip to be over

User

1

Kernel

Device Loc. 1 Loc. 2

Buffer

Buffer

Read 2 Write

Buffer

CPU
Copy

DMA
Copy

Local
Storage

CPU
Copy

Fabric
latency

Remote
Storage

Copy

5 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Optimizing Copy

 Async Read + Async Write ……still composite though
 Queue multiple operations using io_uring

 https://github.com/axboe/liburing/blob/master/examples/io_uring-cp.c
 Pushing copy to kernel

 Application does not have to pass buffers for copying
 Linux has a bunch of APIs for ‘in-kernel’ copy instead
 Sendfile

 Perhaps the oldest of the bunch
 Originally introduced to copy between regular-file to socket

 Splice
 Two step operation
 Copy from file A to pipe (splice-read) and then pipe to file B (splice-write)
 The kernel-infra is used for implementing sendfile too

 Copy_file_range
 The newest of the bunch
 Few file systems use this interface to implement custom copy-acceleration
 Example: server-side-copy in NFS & CIFS

https://github.com/axboe/liburing/blob/master/examples/io_uring-cp.c

6 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Optimizing Copy ….

 Switch to logical-copy
 Possible when there is a higher-level

construct sitting above raw data-blocks
 Few filesystems implement logical copy by

sharing data-blocks
 Create meta but share data
 Copy data on subsequent change
 Essentially lazy copy!

 BTRFS, OCFS and XFS
 How user-space can trigger logical-copy

 Invoke FICLONE or FICLONERANGE ioctl
 ‘cp’ provides a knob

 cp –reflink=always source_file dest_file

Inode A

D1 D2

File A

Inode B

File B

Inode A

D1 D2

File A

Inode B

File B

D1’

On Copy

On Write

Copy-on-Write

7 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Pushing copy further down
….to storage

8 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Copy-offload capability of Storage

 A dedicated ‘copy’ interface from the device itself
 Round-trip involving app/kernel/fabric elements is cut short

 Host does control-plane activity
 Device does data-plane activity

User

Kernel

DeviceLoc. 1 Loc. 2

Submit Command
Collect Completion

In-device Copy

User

1

Kernel

Device Loc. 1 Loc. 2

Buffer

Buffer

Read 2 Write

Buffer

CPU
Copy

DMA
Copy

Local
Storage

CPU
Copy

Fabric
latency

Remote
Storage

Copy Offloaded Copy

9 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

SCSI: Copy-Offload

 At least a decade old; copy across multiple devices
 Two main variants

 Extended Copy (XCOPY)
 Block-ranges describing copy-operation are sent either to source or

destination

 Token Based Copy/ODX
 Obtain cookie from source device using POPULATE TOKEN
 Send cookie to destination device using WRITE USING TOKEN

Populate
Token

Write using
Token

Storage Array

T

Send Token
Server 1

Disk 1 Disk 2 Disk 3

Server 2

T

T

Source Destination

1

2

3

4
6

5

10 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

SCSI: Copy-Offload

 Kernel support
 Remained elusive, despite multiple attempts
 Plumbing efforts in past

 Martin Petersen, 2014, https://www.mail-archive.com/linux-scsi@vger.kernel.org/msg28998.html
 Mikulas Patocka, 2014, https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg686111.html

 Summary
 An IOCTL exposing copy between single source-range and single destination-range
 Block layer to SCSI: Two bios, one with COPY_READ another with COPY_WRITE
 XCOPY issued when both COPY_READ and COPY_WRITE reach to driver without getting split

 Why this’s not upstream yet
 Answer of Martin Petersen (SCSI maintainer): http://mkp.net/pubs/xcopy.pdf
 Copy operations fails if a copy request ever needs to be split as it traverse the stack preventing working in

almost every common deployment configuration
 Storage stack need to switch away from the iterative stacking approach……this has not happened, not yet!

https://www.mail-archive.com/linux-scsi@vger.kernel.org/msg28998.html
https://www.mail-archive.com/linux-kernel@vger.kernel.org/msg686111.html
http://mkp.net/pubs/xcopy.pdf

11 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

NVMe Interface for Offload
…copy command

12 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here XCopy turned out to be “complex” command

 Multitude of options for copy; within LUN, across LUNs (intra
array and inter array too)

 NVMe chose “Simple” Copy Command. Simple
because scope is within the single namespace

 Single command to copy multiple source LBA
ranges to a single destination LBA
 Each source range is a combination of source LBA

offset and length
 Source ranges are copied in same order

 On command failure
 Return lowest numbered Source Range entry that was not

successfully copied.

NVMe Copy Command

Namespace A
Namespace B

Copy

NVMe Device

100 + 8

Source Ranges

200 + 16

400 + 8

[800, 3]

Destination LBA

100 + 8

200 + 16

400 + 8

[800, 3]

On failure, returned value = 1

0

1

2

13 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

NVMe Copy Command

Namespace A
Namespace B

Copy

NVMe Device

100 + 8

Source Ranges

200 + 16

400 + 8

[800, 3]

Destination LBA

 Number of source ranges in a single
copy command is limited by MSRC

 Maximum length of a single source
range is limited by MSSRL

 Overall copy size of single SCC
command is limited by MCL

14 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Why now?
 Existing landscape

 Use cases for in-device-copy have become more relevant
 Very large SSDs (even without QLC)
 Emergence of ZNS, requiring host-side garbage-collection

 NVMe & NVMeOF is widely adopted as storage & networking protocol
 Disaggregates setups (compute node separate from storage nodes)

 High-performance HW; while CPUs are not getting faster (https://riscv.org/wp-content/uploads/2018/12/A-New-Golden-Age-for-
Computer-Architecture-History-Challenges-and-Opportunities-David-Patterson-.pdf)
 Single thread performance: stagnant due to Denard Scaling
 Multi-thread performance: slowing down of Moore’s law

 Usecases
 Host-Side Garbage-Collection

 ZNS command set proposes zone-abstraction
 Once full, zone need to be explicitly ‘reset’ before it can be reused
 Before reset, host may need to gather valid data of zone(s) and copy that out to free zone

 Can be useful for log-structured FS/DBs sitting over CNS too
 Defragmentation

 FS may develop aging/fragmentation over time
 With in-device copy, defragmentation process can be kept confined to device

https://riscv.org/wp-content/uploads/2018/12/A-New-Golden-Age-for-Computer-Architecture-History-Challenges-and-Opportunities-David-Patterson-.pdf

15 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Plumbing scheme in Linux Kernel
…..work-in-progress

16 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Generic copy-offload components

Syscall

VFS/FS

Block Layer

Driver

Device

ioctl copy_file_range
Sync

Io_uring aio

Async

BTRFS F2FS XFS

REQ_OP_COPY

Copy Offload
REQ_OP_READ +
REQ_OP_WRITE

Copy Emulation

NVMe Driver

Copy command Read/Write

w Copy w/o Copy

Kcopyd

linear

stripe

mirror

Device Mapper

Common
Infra

Async binding

Sync Binding Async Binding

FS leveraging copy-offload
(user-driven/internal)

• Protocol agnostic COPY
cmd (for upper layers)

• Abstract SCC limits

Generic copy-offload user-
interface

Work with Block-layer for
SCC abstraction

• Virtual block-devices
over physical devices

• Stackable

Source-code and discussions: https://lore.kernel.org/linux-nvme/20210817101423.12367-1-selvakuma.s1@samsung.com/

https://lore.kernel.org/linux-nvme/20210817101423.12367-1-selvakuma.s1@samsung.com/

17 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

User-interface

 Current Scheme
 Existing copy syscalls do not

accept a cluster of source
locations

 New BLKCOPY ioctl carrying a
payload over raw block device

 In future
 Expose async interface via

io_uring and/or linux aio
 copy_file_range for FS and raw-

block dev

ioctl(fd, BLKCOPY, ©_range)
User
Kernel

18 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

BLKCOPY ioctl

 Example: copy three source ranges to single destination within a namespace

Namespace A
Namespace B

Copy

NVMe Device

0 + 8

Source Ranges

16 + 8

32 + 8

[64, 3]

Destination

19 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Copy: Block-layer & NVMe driver

 Generic Copy interface
 Block-Layer/Driver work together to abstract device details
 Expose protocol-agonistic REQ_OP_COPY to upper layers (FS, user etc.)

 Provide sync or async completion, depending on the caller

 Hide device limits, may impose kernel-defined limits

 Copy emulation
 When underlying device not support copy-offload interface
 Implemented by using regular read and write

20 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Copy: Block/Driver operation sequence

Bio 1

REQ_OP_COPY
dest_bdev
dest_offset

User Payload

ioctl(BLKCOPY)

Payload 1

Bio 2

REQ_OP_COPY
dest_bdev
dest_offset + p1

Payload 2

Request 1
(bio 1)

Request 2
(bio 2)

Split (if > device-limits)

REQ_OP_COPY
Handler

COPY Cmd COPY Cmd

Namespace A

Block Layer

NVMe Driver

NVMe Device

• Process user-payload: validity checks, remapping in case
of partitioned device, split if larger than limits

• Form another payload (one-to-many)
• Encapsulate each payload into bio with opcode

REQ_OP_COPY and REQ_NOMERGE flag
• Bio, packed into request, travels down
• Post all submissions, caller is notified (either sync or async

fashion)

• Converts block-layer payload to NVMe format (sector-to-
lba conversion)

• Forms Copy command and dispatches to Device

User-space

21 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

In-Kernel user: dm-kcopyd

 What is dm-kcopyd
 Kernel daemon to copy (read+write) from one block-device to

one/more block devices
 Part of the device-mapper infra; used by other device-mappers

 Enabling copy-offload
 dm_kcopyd_copy() plumbing

 Switch to offload if both source and destination dev are on single underlying
namespace supporting COPY command

 Example: dm-clone
 one-to-one copy of source-device into destination-device
 Hydration: trigger copying of ranges

Meta

Partition 1 Partition 2 Device

Source Destination

NVMe Copy

DM-Clone

22 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Device-Mapper: challenges

 What is device-mapper
 Subsystem to create virtual block-device on top of real ones
 Implement the functionality not present in the underlying

device: concatenation, striping, encryption, snapshot etc.
 Stackable – virtual device over virtual
 Remap the IO on virtual device to underlying ones

 Read/write bio is split/remapped as it travels down

 Challenges with copy-offload
 Defining semantics of copy-operation across various DMs
 Virtual source/dest device may contain N other underlying

device
 Copy operation needs to be made composite (Read + Write)

for propagation
 Scatter copy into multiple “read + write” at block layer
 Gather at NVMe driver to form SCC commands

Real Dev 1 Real Dev 2 Real Dev 3

Virtual device (DM-linear)

Map table Map table Map table

23 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Next steps

 There are many, but top few are -
 Device-mapper offload support (either have it wired up, or get the consensus on moving without it)
 Async interface for copy-offload via io_uring
 Copy offload support in file systems

24 | ©2021 Storage Networking Industry Association ©. Samsung Semiconductor. All Rights Reserved.

Speaker
Photo Will
Be Placed
Here

Please take a moment to rate this session.
Your feedback is important to us.

	Towards Copy-Offload in Linux NVMe
	Foreword & Acknowledgement
	Agenda
	Copying data, and costs that’re out there
	Optimizing Copy
	Optimizing Copy ….
	Pushing copy further down
	Copy-offload capability of Storage
	SCSI: Copy-Offload
	SCSI: Copy-Offload
	NVMe Interface for Offload
	NVMe Copy Command
	NVMe Copy Command
	Why now?
	Plumbing scheme in Linux Kernel
	Generic copy-offload components
	User-interface
	BLKCOPY ioctl
	Copy: Block-layer & NVMe driver
	Copy: Block/Driver operation sequence
	In-Kernel user: dm-kcopyd
	Device-Mapper: challenges
	Next steps
	Please take a moment to rate this session.

