Facts, Figures and Insights from 250,000 Hard Drives

Andrew Klein, Storage Cloud Evangelist, Backblaze
Overview

- Where do these 250,000 drives live and work
- What is a drive failure?
- Drive failure and…
 - Power cycling
 - Time
 - Temperature
- Predicting drive failure
1.8 Exabytes
Available data storage

4 data centers
California (2), Arizona & Holland

178,166
Active HDD data drives

260,461
Total HDD data drives

246,100,245
Lifetime drive days
Where the drives work

* 20 =

60 drives

20 drives is 1 tome * 60 tomes in a 1 vault
= 1,200 drives in 1 vault
Collecting Drive Data

- Use smartmontools package to collect S.M.A.R.T. data
 - https://www.smartmontools.org
- Collect data once a day from each drive
- Started keeping data in April 2013
- Open Sourced the data in February 2015
Drive Data Collected Each Day

<table>
<thead>
<tr>
<th>date</th>
<th>serial_number</th>
<th>model</th>
<th>capacity_bytes</th>
<th>failure</th>
<th>Smart_1_normalized</th>
<th>Smart_1_raw</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/7/21</td>
<td>Z305B2QN</td>
<td>ST4000DM000</td>
<td>4000787030016</td>
<td>0</td>
<td>98</td>
<td>2766</td>
</tr>
<tr>
<td>6/7/21</td>
<td>PL1331LAHG154H</td>
<td>HGST HMS5SC4040ALE640</td>
<td>4000787030016</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>6/7/21</td>
<td>ZACH007</td>
<td>ST8000NM0055</td>
<td>8001563222016</td>
<td>1</td>
<td>81</td>
<td>139015</td>
</tr>
<tr>
<td>6/7/21</td>
<td>ZA130TTW</td>
<td>ST8000DM002</td>
<td>8001563222016</td>
<td>0</td>
<td>83</td>
<td>100901</td>
</tr>
<tr>
<td>6/7/21</td>
<td>ZA18CEBF</td>
<td>ST8000NM0055</td>
<td>8001563222016</td>
<td>0</td>
<td>81</td>
<td>140551</td>
</tr>
<tr>
<td>6/7/21</td>
<td>PL2331LAH3WYAJ</td>
<td>HGST HMS5SC4040BLE640</td>
<td>4000787030016</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

Smart Stats: There are 255 pairs of values per drive. Examples:
- Smart_1: Read Error Rate
- Smart_5: Reallocated Sector Count
- Smart_9: Power On Hours

Drive Day: The data collected for one drive for one day.
What is Drive Failure?

- The drive will not spin up or connect to the OS.
- The drive will not sync, or stay synced in a storage array.
- The statistics we track show persistent values above our thresholds.
Two Types of Failures

Reactive Failure
- We react to the failure

Proactive Failure
- Triggered by SMART stats, FSCK, etc.
- Reviewed by Backblaze before action is taken

In Either Case
- Removed drives are quarantined until they are no longer needed.
 - Cloning, fault analysis, etc.

Data Center: Sac0
Pod: pod-000-1113-01
Drive: drive_0057
Tasks: Replace Data Drive
Action: Proactive
Reason: High Offline Uncorrectable (SMART)
Brand: HGST
Model: HGST HUH721212ALN604
Serial: 8AJK007BH
Size: 12TB Drive
Notes: 5 Reallocated_Sector_Ct - 82
197 Current_Pending_Sector - 276
198 Offline_Uncorrectable - 266
199 UDMA_CRC_Error_Count - 0
9 Power_On_Hours - 23422
Found ATA error that is 2 hours old - CONSIDER REPLACING THIS DRIVE
Annualized Failure Rate

1. Define AFR cohort and period:
 a. Cohort = Model ABC123
 b. Period = Q2 2021

2. Obtain Drive Days and Drive Failures for the cohort and period.
 a. Drive Days = 409,124
 b. Drive Failures = 17
 c. Drive Count = 5,000

3. Apply Formula: \[AFR = \left(\frac{\text{Drive Failures}}{\left(\frac{\text{Drive Days}}{365} \right)} \right) \times 100 \]

 \[AFR = \left(\frac{17}{\left(\frac{409,124}{365} \right)} \right) \times 100 = 1.52\% \]

This method accounts for drives with different drive days within the period.
Drive Failure and …

Power cycling, time, temperature…
Average Number of Power Cycles for Each Drive

<table>
<thead>
<tr>
<th>Drive Type</th>
<th>Per Year</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good Drives</td>
<td>3.20</td>
<td>7.46</td>
</tr>
<tr>
<td>Failed Drives</td>
<td>3.95</td>
<td>11.24</td>
</tr>
</tbody>
</table>
Power Cycling

Number of Power Cycles a Failed Drive Experienced over Time

R² = 14.6%
Annualized Failure Rate Over Time (Quarters)
Temperature of Operational versus Failed Drives

Operational (Good) Drives
- Average: 29.1 (83.4°F)
- Median: 29.0
- Mode: 28.0

Failed Drives
- Average: 29.8 (85.6°F)
- Median: 29.0
- Mode: 30.0

AFR for observation period: 1.04%
Relationship of Drive Temperature to Drive Age

Operational (Good) Drives

Failed Drives

AFR for observation period: 1.04%
Temperature versus Drive Size

Average temperature of all operational data drives by size

Average Temp. 29.1
Predicting Drive Failure

Yesterday and Today
SMART Attributes as Failure Detection

Percentage of drives with SMART attribute RAW value > 0

<table>
<thead>
<tr>
<th>Drive Status</th>
<th>SMART 5 Reallocated Sectors Count</th>
<th>SMART 187 Reported Uncorrectable Errors</th>
<th>SMART 188 Command Timeout</th>
<th>SMART 197 Current Pending Sector Count</th>
<th>SMART 198 Uncorrectable Sector Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational</td>
<td>1.1%</td>
<td>0.5%</td>
<td>4.8%</td>
<td>0.7%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Failed</td>
<td>42.2%</td>
<td>43.5%</td>
<td>44.8%</td>
<td>43.1%</td>
<td>33.0%</td>
</tr>
</tbody>
</table>

1) Failed drives as of one day prior to being marked as failure
2021 versus 2017

<table>
<thead>
<tr>
<th>Drive Status</th>
<th>SMART 5 Reported Sectors Count</th>
<th>SMART 187 Reported Uncorrectable Errors</th>
<th>SMART 188 Command Timeout</th>
<th>SMART 197 Current Pending Sector Count</th>
<th>SMART 198 Uncorrectable Sector Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational</td>
<td>1.1%</td>
<td>0.5%</td>
<td>4.8%</td>
<td>0.7%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Failed</td>
<td>42.2%</td>
<td>43.5%</td>
<td>44.8%</td>
<td>43.1%</td>
<td>33.0%</td>
</tr>
<tr>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational</td>
<td>2.7%</td>
<td>23.5%</td>
<td>0.0%</td>
<td>99.8%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Failed</td>
<td>47.9%</td>
<td>57.1%</td>
<td>10.9%</td>
<td>43.1%</td>
<td>26.1%</td>
</tr>
</tbody>
</table>
Voted off the Island

2017

| SMART 187 Reported Uncorrectable Errors | 0.5% | 43.5% |
| SMART 197 Current Pending Sector Count | 0.7% | 43.1% |

- Only reported by Seagate 4TB drives
- Does not decline/reset

2021

| SMART 187 Reported Uncorrectable Errors | 23.5% | 57.1% |
| SMART 197 Current Pending Sector Count | 99.8% | 43.1% |

- Most larger drives report, but value is the same as SMART 1
- Non-sensible values for SMART 197
2021 versus 2017

<table>
<thead>
<tr>
<th>Drive Status</th>
<th>2017</th>
<th>2021</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SMART 5 Reported Sectors Count</td>
<td>SMART 187 Uncorrectable Errors</td>
</tr>
<tr>
<td>Operational</td>
<td>1.1%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Failed</td>
<td>42.2%</td>
<td>43.5%</td>
</tr>
<tr>
<td>Operational</td>
<td>2.7%</td>
<td>23.5%</td>
</tr>
<tr>
<td>Failed</td>
<td>47.9%</td>
<td>57.1%</td>
</tr>
</tbody>
</table>
Predicting Drive Failure with SMART Stats

- **2016**
 - Predicting Disk Replacement towards Reliable Data Centers.

- **2021**
 - Interpretable Predictive Maintenance for Hard Drives
 - Maxime Amram, Jack Dunn, Jeremy J. Toledano, Ying Daisy Zhuo
 - Optimized Decision Trees
Summary

- Where do these 250,000 drives live and work
- What is a drive failure?
- Drive failure and…
 - Power cycling
 - Time
 - Temperature
- Predicting drive failure
Thank You

Please take a moment to rate this session.

Your feedback is important to us.