STORAGE DEVELOPER CONFERENCE

Virtual Conference September 28-29, 2021

Disaggregated Data Centers

Challenges and Opportunities

Jason van Valkenburgh, Fungible

A SNIA Event

Agenda

- Introducing Fungible
- The State of the Datacenter Today
- The Case
 for Disaggregation
- Our Approach and Results

Objectives:

- Understand common challenges of modern data centers
- How Composable Infrastructure addresses these challenges
- Use Fungible's approach as an example

Of Interest...

SD@ Conference COMPUTATIONAL STORAGE DIRECTIONS AT FUNGIBLE

September 29 | 12 PM PT

REGISTER HERE

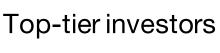
Jai Menon Chief Scientist, Fungible

About Fungible

PRADEEP SINDHU Co-Founder, CDO

BERTRAND SERLET Co-Founder, COO

Founded: 2015 to revolutionize the *agility, security, performance, reliability,* and *economics* of *all* Cloud Data Centers


Technology: a new class of microprocessor, the *Fungible DPU*[™], *software for the DPU*, *systems*, and *solutions* built using the DPU; 60+ patents, many fundamental and ground-breaking

Intellectual Property: silicon, software, systems, and solutions

People: world class, experienced team with deep expertise in *silicon, software & systems* across *compute, network & storage*

Mayfield Battery NORWEST VERTINERS

Bottom Line

- Data center architectures need to transform just as applications have - the mismatch results in low efficiency, overprovisioning and excess cost
- Composable Disaggregated Infrastructure (CDI) is the path forward
- CDI must not come at the expense of performance, security, or cost
- This can only happen with new, purpose-build combinations of silicon, software, and systems

Data centers are Under Pressure

Software architecture has changed, but datacenter architecture has not

- Cloud-native, microservices
- Scale-out applications
- Data services moved from dedicated devices (SAN arrays, etc.) to hosts (e.g. SDS, HCI)

- Increase in east-west traffic, network congestion as workload / platform domain size increases
- More CPU cores spent on storage and networking

The Relationship between CPUs and I/O Has Changed

- Networks and NVMe storage are now significantly faster than servers
- Moore's Law Flattening
- Network speeds increasing ~8 CPU cores to push 100G

- Low network utilization
- More and more resources used for the same capabilities and SLAs

Storage and Server Utilization is Low

- Local NVME used for booting & performance
- Traditional storage deployed in clusters / pods to minimize performance domain

- Stranded local storage that is underutilized
- Applications deployed close to storage to ensure consistent experience
- Workload / platform silos, sized for peak, not average
- Low server utilization

Tradeoffs Drive Decisions - Choose Wisely!

- SDS provides data durability, data reduction and other services via (slow and expensive) x86
- Local NVMe delivers performance but not necessarily durability
- NVMe over TCP support not available on all platforms

- IOPs are swallowed by data services running in software
- Need to choose between performance and durability up front

Security is Paramount

- Rise of side channel attacks
- Encryption in flight and at rest is now a given
- Tenancy needs appropriate isolation

- Mitigations and security services sap performance, costing cores and \$
- Hosts may not necessarily be trusted
- Choice between security & performance, and cost - pick two!

The Results - Silos

Wasted Assets Wasted Time Wasted Power

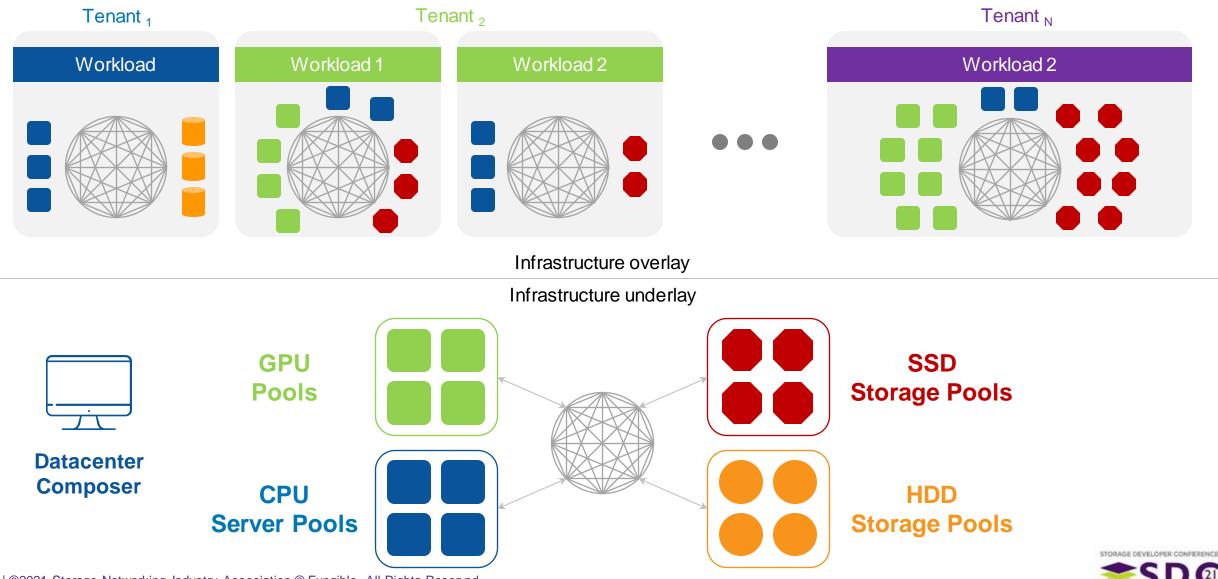
Wasted Money

It all comes down to a lack of trust that performance can be consistent and predictable when the deployment domain is the entire DC

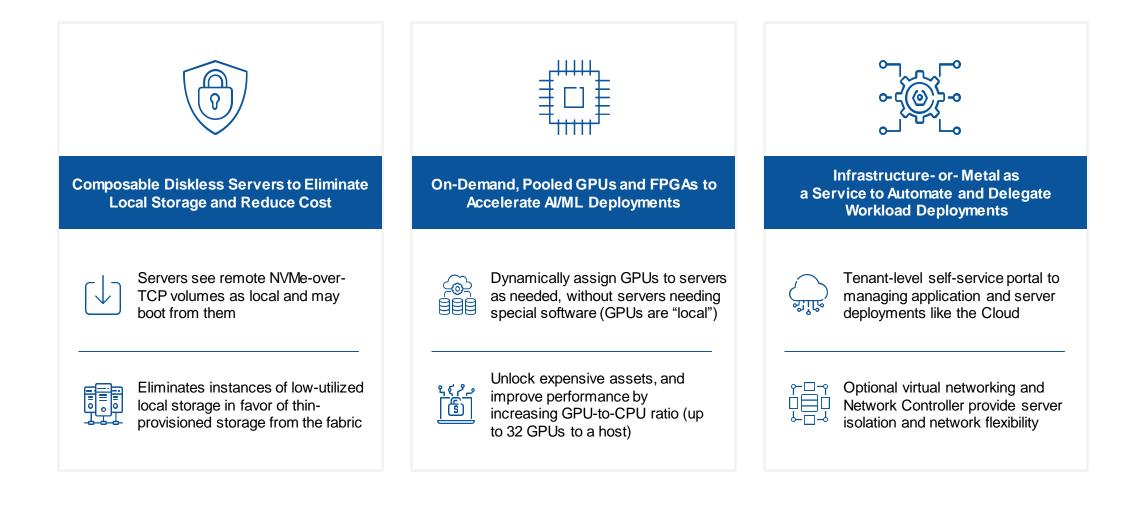
Infrastructure Expectations Have Changed

- "Cloud-First" is Now "Cloud Best"
- Traditional Infrastructure brain drain
- Security & isolation are key

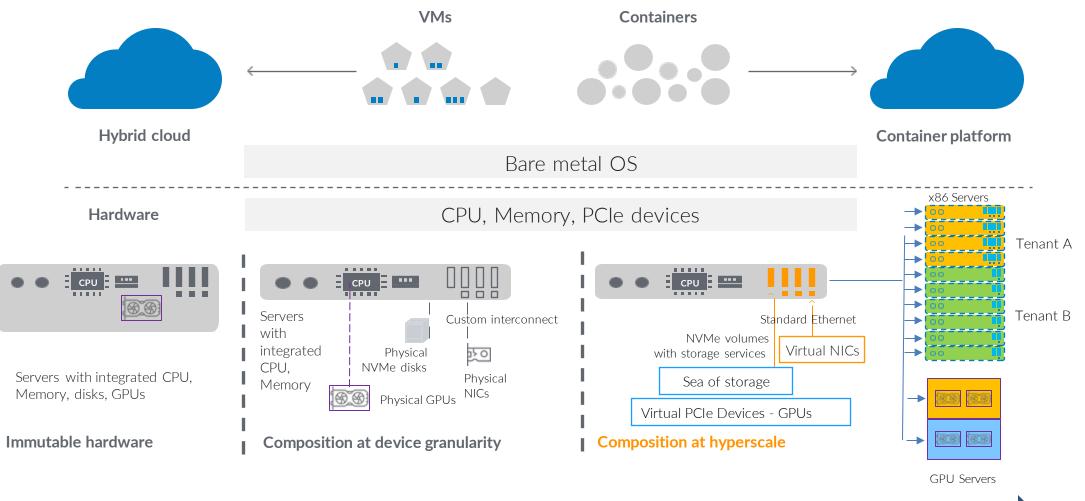
- No one wants to regress while repatriating - a cloud experience is table stakes
- Multi-tenancy matters


Relieving the Pressure

The Case for Disaggregation


13 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.

The Disaggregated Data Center


14 | ©2021 Storage Networking Industry Association © Fungible All Rights Reserved.

Composition Use Cases

Composition Makes Immutable Hardware Flexible

Flexibility

Effects of Scalable Disaggregation and Composition

Automated / screwdriver-less adds/moves/changes

Fewer assets to serve the same workload - servers become highly interchangeable, storage pooled and thin provisioned

Relieves line-of-sight pressure on emerging and future requirements

No forklift upgrades - Independent asset / deployment life cycles between servers, GPUs, and storage

Environmental relief - put hot GPUs in a separate locale where you can better cool them, spare hot CPU cycles and replace with low-power, high performance DPU ones

Prerequisites for Successful Disaggregation

Prerequisites

- Disaggregation must not come at the expense of performance and utility
- Must be invisible to the workload, as who's consuming IT is different than who's providing it
- Prevent Fabric Fatigue and exacerbating skills & staffing shortages

Conclusions

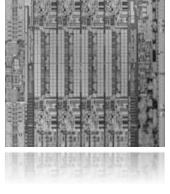
- Need high-speed storage without scale and deployment constraints
- We need a low-latency, congestion-free <u>Ethernet</u> fabric use skills and equipment you have today
- Bare metal without special host software

Successful disaggregation comes down to scalability, network performance and ease of deployment

The Fungible DPU

A New Class of Microprocessor Purpose-Built for the Data-Centric Era

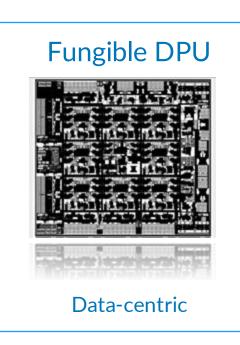
The Fungible DPU is a new class of programmable microprocessor that:



Enables 10x more efficient execution of data-centric workloads

Ŷ

Implements a scalable, low tail latency, congestion-free TrueFabric[™] endpoint



General-purpose

GPU

Vector floating point

Foundational Technology

800G IO PROCESSING

PERFORMANCE & ECONOMICS

Executes data-centric workloads > 10x faster than a CPU, completely offloading network, storage and security from the CPU

200G IO PROCESSING

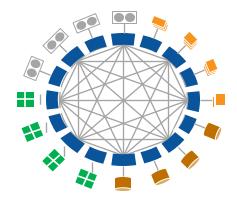
SCALABILITY

Addresses inefficient data interchange between nodes at large scale by enabling an ultra-low latency, tail latency network TrueFabric™

Mix of Silicon and Software To Leverage Strengths of Each

Orchestration Software Embedded Software Data Plane (FunOS) Control Network Storage Virtualization Security Analytics Plane •NVME-o-FCP • IPoE •VXLAN •PUF •Sort •NVME-o-TCP •V-Router •Secure Enclave • Fabric •Filter Composer Agents •V-Switch •Key-Gen • Full TCP •Initiator + Target for •Join Full RDMA •Per VF QoS Key-Store Block Store Select •TLS • Full TLS KV Store •Full BMV •Map Linux VXLAN •Full RPC Offload Regex Reduce File Store Configuration •Hash Stateless Offload •Lambda Erasure Coding •DLP Encryption Compression FunVisor Granular QoS Encryption Telemetry Pooling Policy Composition FunOS Nucleus (scheduling, timer, memory management) DPU **DPU Silicon**

TrueFabric[™] Uniquely Enables Hyper-Disaggregation



TrueFabric

21 | ©2021 Storage Networking Industry Association © Fungi

DPU Powered Data Center Solutions

Fungible Composer

- Turnkey Multi-Tenanted Data Centers
- Agile & Efficient Resource Deployment
- No Network or Application changes Required

Fungible Compute Cards

- Tightly coupled Security, Storage, Network HW Accelerators
- Fully Programable
- Multiple Form Factors 50G, 100G, 200G

Fungible Storage Cluster

- Cloud-Scale Architecture
- High Performance
- Efficient Durability & Cost Effective
- No Compromise Enterprise Features

Key Fungible Storage Cluster Features

Feature	Benefit
Storage pooling	High storage utilization; Independent storage scaling
High performance (IOPS/GB, latency, block and file)	Networked storage @ local SSD performance
Supports VMs, containers, bare-metal	Workload consolidation
Multi-tenancy (per vol protection, encryption, QoS)	Workload consolidation
Scale out	Pay as you grow; manage storage cluster not box
Leadership compression (without performance loss)	TCO; high storage utilization
Encryption with minimal performance impact	Security; workload consolidation
REST API to manage for PBs of data	тсо
Rack scale resiliency @ low overhead	Very high reliability @ low cost

Cloud-Scale Architecture

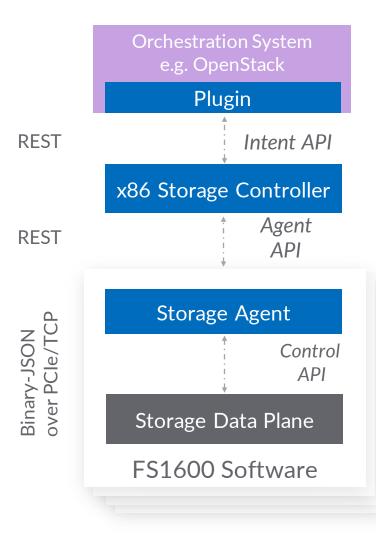
MANAGEMENT &

•API-First

•Scale-Out

Intent-Based

Fungible Composer


Highly Available; Management and Control Plane

CONTROL PLANE STORAGE SERVICE NETWORK SERVICE API SERVICE SYSTEM & DEVICE MGMT. SERVICE **TELEMETRY SERVICE** NVMe DISCOVERY SERVICE Micro-Services Based NETWORK NETWORK TELEMETRY **DATA PLANE** TELEMETRY AGENT AGENT AGENT AGENT AGENT AGENT •High Performance •Flastic Architecture

Control API Hierarchy

INTENT BASED

"Create Volume for VM Root"

HIGH LEVEL COMMANDS

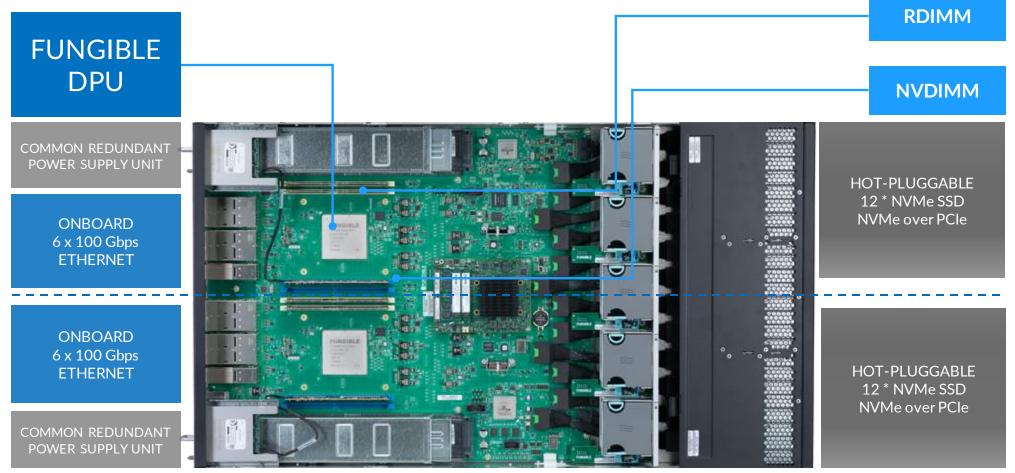
"Create Raw Volume with Encryption and NVMEoF Access"

LOW LEVEL COMMANDS

a. Create "Raw" Volume with Encryption b. Create NVMEoF Controller c. Attach Volume to Controller as Namespace Resources: Device, Volume, Controller

Volume Management Commands: Create, Delete, List, Stats, etc.

Telemetry: per resource instance. E.g. IOPs, bandwidth, latency, capacity, errors, etc.


JSON based API

Volumes are tracked using UUIDs

Under the Hood

Fungible Confidential

Unrivaled Performance With The DPU

	READ	WRITE
Raw Single node	15M IOPS 60 GBytes/sec	4.4M* IOPS 24 GBytes/sec
Network Protected (RF=2) Two nodes (SSD and node failure protection)	15M IOPS 60 GBytes/sec	4M IOPS 16 GBytes/sec
Network Protected 4+2 EC 6 nodes (SSD & node failure protection)	20M IOPS 80 GBytes/sec	6M IOPS 24 GBytes/sec

LINEAR PERFORMANCE SCALING MEASURED UP TO 16 NODES, EXPECT CONTINUED LINEAR SCALING BEYOND THIS

* SSD limited

Oracle RAC OLTP 70/30 Mixed Performance on Fungible FSC (Measured Test results)

Using Linux NVMe over TCP Storage Initiator on Host

	SLOB - OLTP - 70/30 - Except			ept (75/	t (75/25)	
	Read IOPS	Write IOPS	Total IOPS	Read Lat(ms)	LFW Lat(ms)	
3FS - 12 x EC Vols - 2node RAC						
-384 users	613,057	191,246	804,303	0.322	0.44	
3FS - 12 x EC Vols - 4node RAC						
- 784users	808,326	250,177	1,058,503	0.294	0.378	
· ·						
10node RAC (upto 450 users)	432,267	104,258	536,525	0.387	0.923	
2 - 8node						
RAC - 512 users	335,728	143,884	479,612	1.200	N/A	
- 4node cluster - 4						
Oracle Instances	217,573	79,102	296,675	0.660	1.01	
- 4node cluster - 8						
Oracle Instances	299,134	128,200	427,334	~0.800	~1.5	
- 1 x						
Brick - 4node RAC - 96 users	373,310	116,635	489,945	0.490	0.724	

Note: To test physical I/O, the Oracle RAC SGA was configured with 8GB of memory. Specifically, db_cache_size was configured with 128MB.

Oracle RAC Node Components	Quantity / Description	
Server Type	4 x Supermicro	
Memory	256GB per server	
CPU	2x20 Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz per server	
Network Card	1 x Mellanox ConnectX-5 – 100GbE per server	
	1 x 10GbE per server	
Direct Attach Storage	1 x SATA SSD as Boot Disk per server	
Disaggregated Storage	12 EC volumes for ASM DATA Diskgroup for SLOB tablespace	
Operating System	Red Hat Enterprise Linux 8.2 x86 64	
Oracle Grid / Database Software	Oracle 19c	

Ability to be Fast Alone Does Not Move the Needle

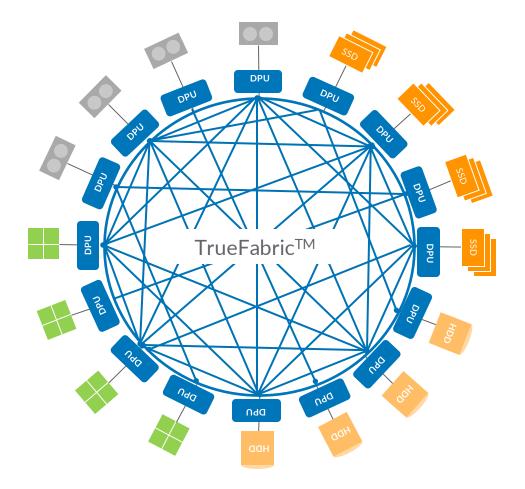
- End to End Speed pointless without ability to avoid congestion
- Multiple paths ("traffic lanes") don't help unless you can leverage them
- ECMP is not dynamic enough in the microservices world - hash collisions cause backup between "elephant and mice" flows
- We need to avoid congestion in the first place and open up all lanes!

"It's more fun to drive a slow car fast, then to drive a fast car slow." —Unknown

TrueFabric[™] Avoids Congestion Before it Starts

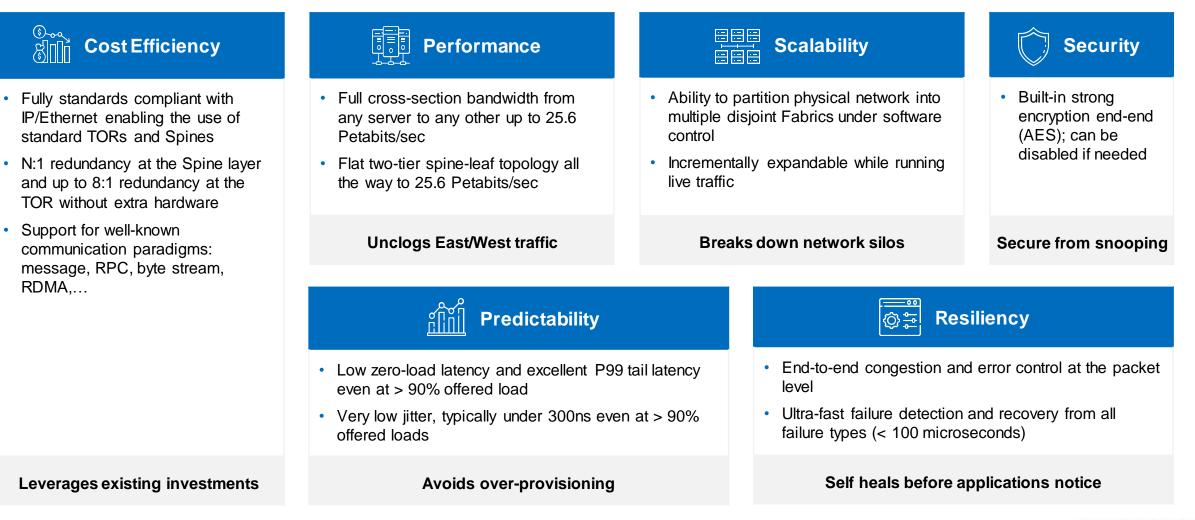
Packet switched, based on open standards (IP over Ethernet)

Full cross sectional any-to-any bandwidth with no constraints


End-to-end congestion control and error control

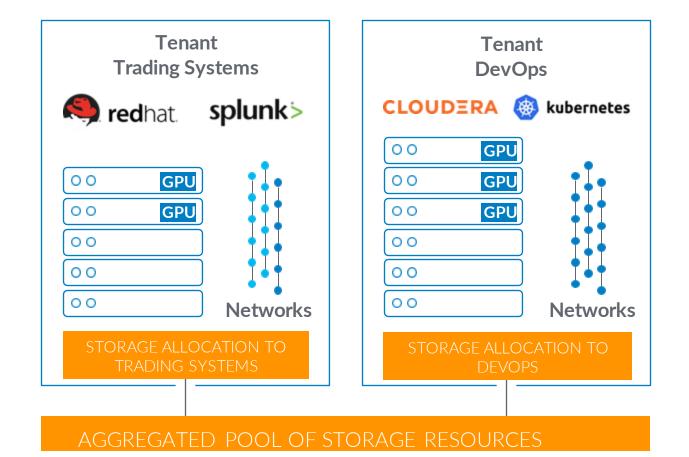
Low zero load latency & excellent tail latency

Scalable from 10 to 100s of thousands of servers


End-to-end encryption

Software-defined connection topologies

The Power of a Fungible DPU[™] Network


•

Multi-Tenancy and Workload Isolation Is Essential Simplified IT through Self-Service

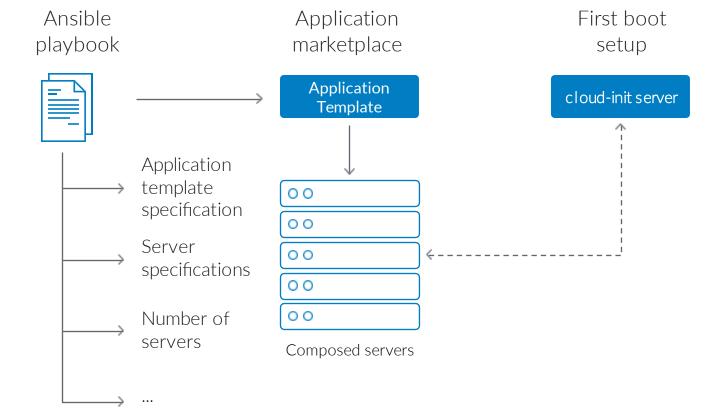
Partition server, storage, GPUs, and networking resources to customers

- Diskless Servers are hard partitioned
- Storage Capacity/IOPs and GPUs are allocated from pools
- Optional virtual networking

Tenants manage hardware within their isolated partition

True self-sufficiency via tenant's independent management portal, APIs and identity manager

Bringing Automation To Bare Metal

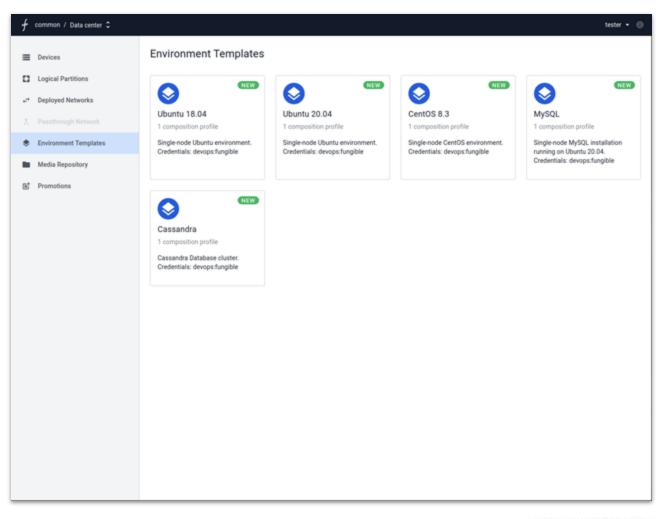

TerraForm/Ansible playbooks for deployment automation

Cloud-native first-boot configuration using Cloud-init

API-first approach

MANAGE BARE-METAL INFRASTRUCTURE, LIKE YOU DO VMS PLUG INTO EXISTING DEVOPS STACKS AND LEVERAGE EXISTING AUTOMATION

One-Click Deployment Of Applications, Ease of Use Simplified App Deployment and Lifecycle Management,



Deploy complex workloads in minutes from pre-configured templates

Marketplace templates can be populated by service providers or their customers

• Each customer tenanted partition has its own marketplace visible just to themselves

RECAP: BENEFITS OF FUNGIBLE DATA CENTERS

PERFORMANCE	Market leading <i>bare-metal performance</i> for <i>data-centric applications</i> - enabled by fully offloading data-centric I/O processing to the Fungible DPU. Frees up cores for applications on host-side.
SECURITY	Independent <i>hardware-accelerated security domains</i> , fine-grained segmentation, robust QoS, line rate encryption.
AGILITY	Reallocate compute, storage and network resources across workloads <i>in minutes</i> to handle workload hot spots. Adapt to changes in workloads to re-allocate high-demand items like GPUs.
SIMPLICITY	Deploy and manage turnkey multi-tenanted data centers with a single pane of glass management. Deploy and manage complex scale-out workloads without any application changes .
COST	Reduces server SKUs to a minimal set, gaining economies of scale and management simplicity. Disaggregation and pooling of server, storage, network and GPU resources enables higher utilization (statistical multiplexing) under changing workload demands. <i>Just-in-time composition</i> of independent compute, storage, network and GPU resources optimizes consumption to exactly meet workload requirements with no wastage.

Thank You

Jason.vanvalkenburgh@fungible.com

36 | ©2021 Storage Developer Conference ©. Insert Company Name Here. All Rights Reserved.