STORAGE DEVELOPER CONFERENCE

BY Developers FOR Developers

An Approach for Impact Analysis of Flash Behavior on QoS in DC/Enterprise SSDs

A SNIA, Event

Ravishankar Singh ,Senior Staff Engineer Yogesh Khurana ,Staff Engineer SSIR

Agenda

- Introduction
- NAND Basics
- SSD Architecture
 - IO Operations
 - Garbage Collection
 - Over-provisioning
- QoS Parameters
- QoS Metrics
- Factors for QoS Behaviour
- NAND parameters impact on QoS
- SW Features impact on QoS
- Results
- References

Introduction

3 | ©2022 Storage Developer Conference ©. All Rights Reserved.

Introduction

- Performance is key feature of SSD Specification for enterprise customers
- SSDs performance are always evolving because of NAND speed and host interface speed enhancements.
- It is very challenging to maintain Quality of Service(QoS) with enterprise/DC workloads.

NAND parameters and FW behaviors have impact on QoS.

NAND Basics

NAND Flash is logically divided into blocks and blocks consists pages

- Basic Erase Operations supported by block unit
- Program/Read operations are supported by Page unit

<u>*Reference :-https://www.researchgate.net/figure/Cell-Layout-of-NAND-Flash-Memory_fig1_234126811</u>*</u>

SSD Architecture

7 | ©2022 Storage Developer Conference ©. All Rights Reserved.

SSD Overall Geometry

<u>Reference :- https://www.researchgate.net/figure/Physical-internal-architecture-of-SSD_fig1_241633959</u>

SSD IO Operation (Write)

9 | ©2022 Storage Networking Industry Association. All Rights Reserved.

SAMSUNG

SSD IO Operation (Read)

10 | ©2022 Storage Networking Industry Association. All Rights Reserved.

SAMSUNG

Garbage Collection

How

- Identifies Which page contain stale data
- Moves the pages with good data to another block
- Erase all the data from original block

Reference:-https://ssstc.com/industrial-ssd-features/garbage-collection-ssd/

Why

- To Manage P/E cycle
- To reduce impact on Endurance
- To reduce impact on performance

Over-Provisioning

How to Calculate

- Every SSD has fixed NAND chips size
- User capacity is provide by IDEMA standard.
- SSD Over-provisioning defined by
 - % OP = (NAND Flash Size IDEMA Size)*100 / NAND Flash Size

Why (Impact) High OP = Low GC = Low WAF = High Write Performance

Quality Of Service (QoS)

What

- QoS is quality level of steady and consistent performance for all requested processes
- It helps to ensure that a particular workload always gets a certain performance level.
- For better QoS, All processes must finish within specific time limit or above a target confidence value.

Why is QoS a challenge?

 SSD policies and characteristics interferes into IO completions and latencies are high

Very High latency because of GC or WL. QoS is compromised

<u>Reference:-http://www.samsung.com/global/business/semiconductor/minisite/SSD/downloads/</u> <u>document/Samsung_SSD_845DC_06_Quality_of_Service(QoS).pdf</u>

13 | ©2022 Storage Networking Industry Association. All Rights Reserved.

SAMSUNG

QoS Parameters

Workload Access

- Read
- Write
- Mixed
- Trim
- Queue Depth (Based on Device type)
 - 32 for SATA / 64K for NVMe
- Block Size
 - 128KB (Sequential)
 - 4KB Random
- Device State
 - Clean
 - Sustained

QoS Metrics

QoS Latency

- Average latency
- Lower Nines : 99%, 99.9%, 99.99%
- Higher Nines : 99.999%, 99.9999%, 99.99999%, 99.999999%

Consistency (Confidence Value)

More than 95%

Factors for QoS Behaviour

Host Factors

- CPU mode and Speed
- Schedulers (NOOP, CFQ)
- RAM Speed
- Host Protocol interface (PCIe, SATA, SAS)
- Device Factors
 - NAND Parameters
 - NAND timings (tR/tPROG/tBERS)
 - NAND Interface Speed
 - NAND Geometry(Channel/Ways)
 - FW Features
 - OP
 - PLP
 - Program / Erase suspend and resume
 - GC

NAND Parameters impacts on QoS

NAND timings

- tR Page read time
- tPROG SLC/TLC/MLC page program time
- tBERS Block erase time
- Better tR/tPROG/tBERS timings means improved latency
- tR/tPROG has impact on program/erase suspend and resume latency

NAND Geometry

- High interleaving with better channel / ways geometry.
- More Outstanding commands are processed parallel
- Improved QoS latency with high parallelism

NAND Interface speed

Better NAND interface ,means improved latency

FW Features impact on QoS

PLP (Power loss Protection)

- Safegaurds SSD in case of Power-loss
- In case of power failure, PLP helps to flush in-flight data to flash
- Cache will be turned off, hence performance degradation

Over-provisioning

- High OP provides low GC overhead hence better IO latencies
- OP has impact on WAF (NAND Write vs Host write)
 - Read Intensive SSDs has 10% OP and high WAF
 - Mixed Pattern SSDs has 30% OP and Low WAF

FW Features (Cont...)

Suspend / resume operations

- Read IO has higher priority than Program/Erase
- Program/erase suspended if it interrupts with Read IO
- High IO latency because of suspend / resume operation
- Mixed workloads has high impact

 IO operations are delayed because of t_{sus/Res} + t_{Res/sus} latencies. Hence QoS drop will be observed.

Results

- QoS bottleneck were analyzed across multiple drives
- Below Table extracts the QoS results with flash parameter changes
- All the results are relative and no absolute value will be shared

Parameter Changes	Read QoS	Write QoS	Mixed QoS	Reason for QoS Drop
tR Drop : 10%	26% 📕	12%	20% 🖊	Slow NAND Read
Die Size Changes (2*256Gb->1*512Gb)	44%	32%	39% 📕	Reduced Interleaving
NAND Type changes(MLC->TLC)	25% 📕	65%	30%	Better bit Density improves Program latency

References

- <u>https://www.researchgate.net/figure/Physical-internal-architecture-of-SSD_fig1_241633959</u>
- <u>https://www.researchgate.net/figure/Cell-Layout-of-NAND-Flash-Memory_fig1_234126811</u>
- <u>https://ssstc.com/industrial-ssd-features/garbage-collection-ssd/</u>
- <u>http://www.samsung.com/global/business/semiconductor/minisite/SSD/downloads/document/Samsung_SSD_84</u> <u>5DC_06_Quality_of_Service(QoS).pdf</u>
- <u>https://www.snia.org/sites/default/files/SDC/2019/presentations/backups/Konan_Andrei_Origin_of_million_IOPs</u> <u>throughput_and_Micro_Second_Latencies_in_NVMe_Enterprise_SSDs.pdf</u>

Acknowledgements

- Puneet Kukreja
- Mihir Shishukala
- Mohan Raj Veerasamy
- Amit Devgan
- Jaegyu Choi
- Madan Udaykumar

Thank You !

Our Contacts

<u>ravi.s@samsung.com</u>

y.khurana@samsung.com

Please take a moment to rate this session.

Your feedback is important to us.

23 | ©2022 Storage Networking Industry Association. All Rights Reserved.