Right SSD for the Right Array

M. K. Jibbe, PhD
HSG NetApp
Technical Director

Bernard Chan
HSG NetApp
Sr. QA Arch

Brian Mckean
HSG NetApp
Sr. SW Arch

Date: 09/01/2015
Abstract

- Given the explosive growth in SSD adoption it is no surprise that there has been huge advancement in SSD technology such as the invention of vertical stacking of cells which created 3D SSDs and multi-level cells chips as well as a multitude of software techniques to address the inherent challenges of NAND (cell degradation, wear leveling, etc.). SSD per drive capacities are increasing dramatically. It is replacing traditional HDD even at the capacity layer of the storage stack to store warm data. Taking this all into account, it is important for us to choose the right SSD for the right storage array product to guarantee that we are delivering the most compelling Flash storage at the most attractive price and performance without sacrificing overall product quality.
Outline

- SSD cell structure (3D, eMLC, tLC, etc.)
- Storage array product RAID controller performance
 - I/O profile (R/W ratios, block size, etc.)
- RAID level operation amplification
- Deployed storage array historical field data
- SSD MTBF and DWPD
 - Endurance Metrics for the last 2 ½ years (Erase Count and Percent Of Blocks Remaining)
 - Expected Life cycle of different SSD drive types
Approach – SSD Cell Structure

- SLC – highest reliability but too $$$
 - Single cell to store one bit of data
 - Faster and much more reliable

- MLC – reliable & $$
 - Single cell to store two bits of data
 - Lower in price
 - Higher wear rates
 - Lower write performance

- cMLC – reliable enough & cheaper than MLC

- TLC – less reliable but $ – consumer grade
Approach – Array & SSD Performance

- Run industry benchmarking test on new SSDs in a storage array
- Compare performance results with previous drive models, and with other drive vendors
 - Latency spikes
 - Read vs. Write
 - IO sizes
 - IO Randomness
- Expose any Array limitation with newer & faster SSDs
SSD Model Y – FW Z3 relative to Z2

- Rates shown are the peak IO rates measured for all queue depths tested
- FW Z3 peak IO rates are within 1% of FW Z2
- Trending to <1% below MSB2
E-Series SSD Technology

- Must meet endurance and performance expectations
 - Characterized by DWPD (drive writes per day)
 - Write endurance is more critical than NAND type

- NetApp® EF-Series SSD is eMLC
 - Rated at 10 DWPD (medium endurance)
 - Warrantied up to 5 years
 - Life expectancy well over 5 years

- SSD operation
 - Handles all maintenance operations in the SSD
 - Garbage collection
 - Wear leveling
 - Keeps SSD ready for consistent operations
 - Multiple processing chips eliminates contention

- SSD Technology
 - Dual ported: more throughput, more resiliency
 - SSDs also have DRAM to assist in multiple concurrent operations
Approach – RAID level operation amplification

- RAID 0 – no amplification
- RAID 1 or 10 – every Write requires additional Write to mirrored SSD
- RAID 5 or 6
 - Full Stripe Write is good
 - Partial Strip Write triggers additional Read(s) for Parity calculation
 - Parity Write
 - Random small Writes needs to be

Write amplification = committed Write / host writes
Approach – Deployed storage array historical field data

- How are customers using our Flash Array?
 - Average throughput
 - Volume Written per day
Average number of IOs per second, (WR + RD) / Sample Time (Period 8 weeks)
Statistics of GB written per day for SSD Population (Period 8 weeks)
Approach – MTBF & DWPD

- **MTBF** = Mean Time Between Failure
 - Expected time between two failures for a repairable system

- **DWPD** = Drive Writes Per Day
 - Daily usage figure in terms of Writes to last the SSD a pre-determined number of years of good operation
DWPD statistics for our SSD population
(SSD are eMLC with 10DWPD → No wearout)
SSD Failure Statistics

- Customer Internal Testing
 - AFR for Flash is 0.2% vs 1.2% for HDD

- Monitored AFR for SSD vs HDD:
 - HSG AFR for SSD is 0.135% vs 1.75% for HDD
1.6 TB 3 DWPD SSD Endurance per Platform versus Host R/W Mix, 60% max IOPs, 8K IO, 70% Duty Cycle (sustained activity 70% of time, 30% no activity), worse case write amplification

*Platform02 Release03 is drive limited with 6 SSD R5 for all mixes and for 0/100, 10/90 for 12 SSD R6
800 GB 3 DWPD SSD Endurance per Platform versus Host R/W Mix, 60% max IOPs, 8K IO, 70% Duty Cycle (sustained activity 70% of time, 30% no activity), worse case write amplification.
800 GB 3 DWPD SSD Endurance per Platform versus Host R/W Mix, 60% max IOPs, 8K IO, 70% Duty Cycle (sustained activity 70% of time, 30% no activity), worse case write amplification.
Endurance Metrics for the last 2 ½ years (Erase Count and % of Blocks Remaining)

- Analysis of SSD drives at different customers’ sites for a 2.5 year period shows the following:
 - SSD at customer sites are not overloaded with large I/Os
 - 56% of the I/O sizes are <= 1M and 18% where 1M < IO<= 10M, 26.4% where 10M < IO<= 100M, and 0.021% where IO > 200M
 - SSDs at customer sites are not wearing out because
 a) Erase count is very small
 - 92% of SSDs have not been erase yet because its written data 0 times to the entire SSD.
 - 8% of the SSD have been erase 1 – 11 times
 b) Majority Drive Write Per Day (DWPD) is below the DWPD of eMLC
 a) 95% of DWPD is < 3 , 5.3% where 3 < DWPD <= 10, and 0.17% where DWPD > 10.

Conclusion: Moving to cMLC (where DWPD is 10) with our new E-series product releases (HW, CFW, and MSW) is a viable and feasible solution.
Summary – choosing the right SSD

- What matters?
 - Customer usage
 - Storage RAID amplification
 - SSD performance
 - SSD endurance (DWPD) and reliability (MTBF)