
+

REST API Development

B. Mason
Netapp E-Series

+
Disclaimer
Opinion expressed here are mine and do not necessarily represent
Netapp

2

Who am I??

• Software Engineer at Netapp E-Series AppAware

• Designer and lead for the REST API for E-Series

• Have done various API in
C/C++/Java/SOAP/REST

• I am not selling a book or anything

3

Agenda

• What is a REST API?
• How are they different from previous API protocols?
• Why are they so useful?

• Technology Primer for REST

• How to build a REST API

• Documentation Standards

• Using a REST API as a client

4

+
Why we do care about the API?

 Integration, Integration, Integration

 IDC Predicts we are in the “Golden Age of APIs”

 “We don’t need a fancy GUI” we need it to plugin to X

 Enterprises don’t care about GUI, they want hardware to plugin to
their Enterprise systems
 CINDER

 VASA

 Etc.…

 Classically handled by CLI

What is a REST API?

• Wikipedia: Representational State Transfer (REST) is a software
architecture style for building scalable web services.

• Objects are exposed as Uniform Resource Identifier (URI/URL)

• Object data is accessed via HTTP(S) and encoded in something easy
to parse (Plain Text/JSON/XML)

• Other attributes

• Client/Server

• Stateless

• Cacheable

• Uniform

 6

https://en.wikipedia.org/wiki/Software_architecture_styles_and_patterns
https://en.wikipedia.org/wiki/Software_architecture_styles_and_patterns
https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/Web_service

Why are they different/more useful ?

• REST IS SIMPLE

• Like SOAP and XMLRPC , its “Text Based”
• No weird binary formats to parse
• Easy to consume by any language
• Relies on standard compression algorithms for speed

• Unlike SOAP, it is not overdesigned
• Its not even designed, it’s a pattern
• No committees, grass roots

• It does not have a standard description language
• No IDL, WSDL, MIDL

7

+
Lets look at a Demo

Explore Simple Web Service

8

+ Technology Primer for REST

9

Definitions

 HTTP – Hyper Text Transfer Protocol

 HTTPS – Secure HTTP (AKA, HTTP over SSL)

 Mime Type - is a two-part identifier to standardize file-formats across
the Internet: (text/plain , text/html, application/json)

 SSL /TLS – Secure Socket Layer / Transport Layer Security

 URL/URI – The address of a resource (http://host:port/path)

 Query String – Part of the URL after the question mark. Contains
key/value data
 http://somehost.com/resource?key=value&key=value

 JSON – Java Script Object Notation

10

http://somehost.com/resource?key=value&key=value

HTTP Verbs

• GET – Gets a Resource (What happens when you
surf)

• POST – Creates a new Sub Resource

• PUT – Updates a resource

• DELETE – Deletes or Resets a Resource

• HEAD – Like GET but just gets the HEADERS

• OPTION – Used in CORS

• TRACE / CONNECT – Not really used in REST
11

Sample GET Request

12

Host: somehost.domain.com
Accept: application/json
Accept-Langauge: en-us

Status: ok
Content-Type: application/json

{
 “message”:”Hello REST”
}

Client Server

HTTP GET

Common HTTP Headers

• Host – Target Host

• Content-Type – Mime Type for the inbound
content

• Accept – Mime Types that are acceptable
responses

• Accept-Encoding – Acceptable Encoding (zip,
etc…)

• Status – The Status code for the response
(200,400,500…)

13

+
How to build a REST API

14

Building a REST Server

All you really need is a way to generate dynamic content

 Frameworks can be a huge help
 Handles URL mapping to handlers

 Handles Language Object to Payload and back (JSON, XML etc…)

 REST Frameworks are everywhere
 Django for Python

 Certainly ones for .net

 Several Java Frameworks

We will focus on Java because that is what I know

15

Simple Servlet

@WebServlet(value ="/test", name = "SimpleRest")
public class SimpleRest extends HttpServlet {

protected void doGet(HttpServletRequest req,

 HttpServletResp resp) {
 PrintWriter out;

 out=new PrintWriter(response.getOutputStream());
 resp.setHeader("Content-Type","application/json");
 out.println("{\"message\":\"Hello World\"}");

 out.flush();
 out.close();
 }
}

16

JAX-RS

 Java Specification for REST API

 JSR 339

 Set of annotations to define REST API

 Makes creating REST APIs pretty easy
 Don’t tell my boss

 Jersey is an implementation of JSR 339

 Jersey with Jackson is a frequent combination

JAX RS for Java Quick Example

@Path("hello")
public class HelloJersey {
 @GET
 @Produces("application/json")
 public ResponseOne handleGet(){
 ResponseOne ret;

 ret=new ResponseOne("Hello Jersey")

 return ret;
 }
}

18

Response Class - POJO

@XmlRootElement
public class ResponseOne implements Serializable{
 private String message;

 public ResponseOne() {
 }

 public ResponseOne(String message) {
 this.message = message;
 }

 public String getMessage() {
 return message;
 }

 public void setMessage(String message) {
 this.message = message;
 }
}
 19

Documenting REST APIs

 Good documentation is a Key to user acceptance!

 Quick search will find many options

 WADL – Web Application Description Language

 Swagger – A Open Source project for REST

 Various commercial offerings

20

Swagger World

 Swagger has a language neutral JSON representation of REST API

 There are tools to produce the JSON

 There is a Web UI project
 Reads the Swagger JSON definition of your API

 Presents interactive documentation

 Integrates with various languages

+
Swagger UI demo

+
Question? Do you start with
documentation or do you start with
code?

+
Embedding Docs in Code

 How this works is obviously language specific

 For Java, Swagger tools read JAX-RS annotations and custom
Swagger annotations

 Python’s Django Framework uses Swagger

+ Using a REST API

+
Lets start with a demo

 The Advance REST Client is a plugin for Chrome to test REST
APIs

 cURL is a command Unix command line for accessing web
resources

+
SDK For REST APIs

 You don’t need any special SDKs to consume a REST Server!
 All modern languages have libraries for HTTP.

 JSON processing is ubiquitous

 SDKs are a nice to have
 For strongly type languages like Java, having class definition is

nice

 Swagger provides tools to generate client SDKs

+ Questions?

Links

 https://jax-rs-spec.java.net/

 http://www.django-rest-framework.org/

 http://swagger.io/

 http://www.w3.org/Protocols/rfc2616/rfc2616.html

 https://jcp.org/en/jsr/detail?id=339

 https://jersey.java.net/

 http://wiki.fasterxml.com/JacksonHome

29

https://jax-rs-spec.java.net/
http://www.django-rest-framework.org/
http://swagger.io/
http://www.w3.org/Protocols/rfc2616/rfc2616.html
https://jcp.org/en/jsr/detail?id=339
https://jersey.java.net/
http://wiki.fasterxml.com/JacksonHome

	REST API Development
	Disclaimer
	Who am I??
	Agenda
	Why we do care about the API?
	What is a REST API?
	Why are they different/more useful ?
	Lets look at a Demo
	Technology Primer for REST
	Definitions
	HTTP Verbs
	Sample GET Request
	Common HTTP Headers
	How to build a REST API�
	Building a REST Server
	Simple Servlet
	JAX-RS
	JAX RS for Java Quick Example
	Response Class - POJO
	Documenting REST APIs
	Swagger World
	Swagger UI demo
	Slide Number 23
	Embedding Docs in Code
	Using a REST API
	Lets start with a demo
	SDK For REST APIs
	Questions?
	Links

