
+

REST API Development

B. Mason
Netapp E-Series

+
Disclaimer
Opinion expressed here are mine and do not necessarily represent
Netapp

2

Who am I??

• Software Engineer at Netapp E-Series AppAware

• Designer and lead for the REST API for E-Series

• Have done various API in
C/C++/Java/SOAP/REST

• I am not selling a book or anything

3

Agenda

• What is a REST API?
• How are they different from previous API protocols?
• Why are they so useful?

• Technology Primer for REST

• How to build a REST API

• Documentation Standards

• Using a REST API as a client

4

+
Why we do care about the API?

 Integration, Integration, Integration

 IDC Predicts we are in the “Golden Age of APIs”

 “We don’t need a fancy GUI” we need it to plugin to X

 Enterprises don’t care about GUI, they want hardware to plugin to
their Enterprise systems
 CINDER

 VASA

 Etc.…

 Classically handled by CLI

What is a REST API?

• Wikipedia: Representational State Transfer (REST) is a software
architecture style for building scalable web services.

• Objects are exposed as Uniform Resource Identifier (URI/URL)

• Object data is accessed via HTTP(S) and encoded in something easy
to parse (Plain Text/JSON/XML)

• Other attributes

• Client/Server

• Stateless

• Cacheable

• Uniform

 6

https://en.wikipedia.org/wiki/Software_architecture_styles_and_patterns
https://en.wikipedia.org/wiki/Software_architecture_styles_and_patterns
https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/Web_service

Why are they different/more useful ?

• REST IS SIMPLE

• Like SOAP and XMLRPC , its “Text Based”
• No weird binary formats to parse
• Easy to consume by any language
• Relies on standard compression algorithms for speed

• Unlike SOAP, it is not overdesigned
• Its not even designed, it’s a pattern
• No committees, grass roots

• It does not have a standard description language
• No IDL, WSDL, MIDL

7

+
Lets look at a Demo

Explore Simple Web Service

8

+ Technology Primer for REST

9

Definitions

 HTTP – Hyper Text Transfer Protocol

 HTTPS – Secure HTTP (AKA, HTTP over SSL)

 Mime Type - is a two-part identifier to standardize file-formats across
the Internet: (text/plain , text/html, application/json)

 SSL /TLS – Secure Socket Layer / Transport Layer Security

 URL/URI – The address of a resource (http://host:port/path)

 Query String – Part of the URL after the question mark. Contains
key/value data
 http://somehost.com/resource?key=value&key=value

 JSON – Java Script Object Notation

10

http://somehost.com/resource?key=value&key=value

HTTP Verbs

• GET – Gets a Resource (What happens when you
surf)

• POST – Creates a new Sub Resource

• PUT – Updates a resource

• DELETE – Deletes or Resets a Resource

• HEAD – Like GET but just gets the HEADERS

• OPTION – Used in CORS

• TRACE / CONNECT – Not really used in REST
11

Sample GET Request

12

Host: somehost.domain.com
Accept: application/json
Accept-Langauge: en-us

Status: ok
Content-Type: application/json

{
 “message”:”Hello REST”
}

Client Server

HTTP GET

Common HTTP Headers

• Host – Target Host

• Content-Type – Mime Type for the inbound
content

• Accept – Mime Types that are acceptable
responses

• Accept-Encoding – Acceptable Encoding (zip,
etc…)

• Status – The Status code for the response
(200,400,500…)

13

+
How to build a REST API

14

Building a REST Server

All you really need is a way to generate dynamic content

 Frameworks can be a huge help
 Handles URL mapping to handlers

 Handles Language Object to Payload and back (JSON, XML etc…)

 REST Frameworks are everywhere
 Django for Python

 Certainly ones for .net

 Several Java Frameworks

We will focus on Java because that is what I know

15

Simple Servlet

@WebServlet(value ="/test", name = "SimpleRest")
public class SimpleRest extends HttpServlet {

protected void doGet(HttpServletRequest req,

 HttpServletResp resp) {
 PrintWriter out;

 out=new PrintWriter(response.getOutputStream());
 resp.setHeader("Content-Type","application/json");
 out.println("{\"message\":\"Hello World\"}");

 out.flush();
 out.close();
 }
}

16

JAX-RS

 Java Specification for REST API

 JSR 339

 Set of annotations to define REST API

 Makes creating REST APIs pretty easy
 Don’t tell my boss

 Jersey is an implementation of JSR 339

 Jersey with Jackson is a frequent combination

JAX RS for Java Quick Example

@Path("hello")
public class HelloJersey {
 @GET
 @Produces("application/json")
 public ResponseOne handleGet(){
 ResponseOne ret;

 ret=new ResponseOne("Hello Jersey")

 return ret;
 }
}

18

Response Class - POJO

@XmlRootElement
public class ResponseOne implements Serializable{
 private String message;

 public ResponseOne() {
 }

 public ResponseOne(String message) {
 this.message = message;
 }

 public String getMessage() {
 return message;
 }

 public void setMessage(String message) {
 this.message = message;
 }
}
 19

Documenting REST APIs

 Good documentation is a Key to user acceptance!

 Quick search will find many options

 WADL – Web Application Description Language

 Swagger – A Open Source project for REST

 Various commercial offerings

20

Swagger World

 Swagger has a language neutral JSON representation of REST API

 There are tools to produce the JSON

 There is a Web UI project
 Reads the Swagger JSON definition of your API

 Presents interactive documentation

 Integrates with various languages

+
Swagger UI demo

+
Question? Do you start with
documentation or do you start with
code?

+
Embedding Docs in Code

 How this works is obviously language specific

 For Java, Swagger tools read JAX-RS annotations and custom
Swagger annotations

 Python’s Django Framework uses Swagger

+ Using a REST API

+
Lets start with a demo

 The Advance REST Client is a plugin for Chrome to test REST
APIs

 cURL is a command Unix command line for accessing web
resources

+
SDK For REST APIs

 You don’t need any special SDKs to consume a REST Server!
 All modern languages have libraries for HTTP.

 JSON processing is ubiquitous

 SDKs are a nice to have
 For strongly type languages like Java, having class definition is

nice

 Swagger provides tools to generate client SDKs

+ Questions?

Links

 https://jax-rs-spec.java.net/

 http://www.django-rest-framework.org/

 http://swagger.io/

 http://www.w3.org/Protocols/rfc2616/rfc2616.html

 https://jcp.org/en/jsr/detail?id=339

 https://jersey.java.net/

 http://wiki.fasterxml.com/JacksonHome

29

https://jax-rs-spec.java.net/
http://www.django-rest-framework.org/
http://swagger.io/
http://www.w3.org/Protocols/rfc2616/rfc2616.html
https://jcp.org/en/jsr/detail?id=339
https://jersey.java.net/
http://wiki.fasterxml.com/JacksonHome

	REST API Development
	Disclaimer
	Who am I??
	Agenda
	Why we do care about the API?
	What is a REST API?
	Why are they different/more useful ?
	Lets look at a Demo
	Technology Primer for REST
	Definitions
	HTTP Verbs
	Sample GET Request
	Common HTTP Headers
	How to build a REST API�
	Building a REST Server
	Simple Servlet
	JAX-RS
	JAX RS for Java Quick Example
	Response Class - POJO
	Documenting REST APIs
	Swagger World
	Swagger UI demo
	Slide Number 23
	Embedding Docs in Code
	Using a REST API
	Lets start with a demo
	SDK For REST APIs
	Questions?
	Links

