
The Bw-Tree Key-Value Store and
Its Applications to Server/Cloud
Data Management in Production

Sudipta Sengupta

Joint work with Justin Levandoski and David Lomet
(Microsoft Research)

And Microsoft Product Group Partners across SQL Server,
Azure DocumentDB, and Bing ObjectStore

The B-Tree

• Key-ordered access to records

• Separator keys in internal nodes (to guide search) and full records in
leaf nodes

• Efficient point and range lookups

• Balanced tree via page split and merge mechanisms

On Disk

In

Memory

…data datadata data datadata

Design Tenets for A New B-Tree

• Lock-free operations for high concurrency

• Exploit modern multi-core processors

• Log-structured Storage Organization

• Exploit fast random read property of flash and

work around inefficient random writes

• Delta updates to pages

• Reduces cache invalidation in memory hierarchy

• Reduces garbage creation and write amplification

on flash, increases device lifetime

Bw-Tree Architecture

B-Tree
Layer

Cache
Layer

Flash
Layer

• Expose API

• B-tree search/update logic

• In-memory pages only

• Logical page abstraction for

B-tree layer

• Moves pages between memory

and flash as necessary

• Reads/Writes from/to storage

• Storage management

LLAMA

Access
Method

The Mapping Table

• Expose logical pages to the access
method layer
• Translates logical page ID to physical

address

• Helps to isolate updates to a single
page

• Central data structure for multi-
threaded concurrency control

• Also used for log-structured store mapping

• Updated in lock-free manner [using compare-
and-swap (CAS)]

Page ID Physical
Address

Mapping Table

Page

Page

Page
Flash

RAM

Page

1 bit 63 bits

flash/
mem
flag

address

Page P

Insert record

on page P

Page P

Page

ID

Physical

Address

P

Mapping Table

Δ: Insert record 50

Δ: Delete record 48

Δ: Update record 35 Δ: Insert record 60

Consolidated Page P

Update record 35 Insert record 60

PID Physical
Address

2

Mapping Table

Split Δ

Page 1 Page 2 Page 3

Page 4

4

Index Entry Δ

Logical pointer

Physical pointer

Flash SSDs: Log-Structured Storage

FusionIO 160GB ioDrive

3x

134725 134723

49059

17492

0

25000

50000

75000

100000

125000

150000

seq-reads rand-reads seq-writes rand-writes
IO

P
S

 Use flash in a log-structured manner

LLAMA Log-Structured Store

• Suitable for flash + other benefits

• Amortize cost of writes over many page
updates
• Aggregate large amounts of new/changed data

and append to the log in a single I/O

• Multiple random reads to fetch a “logical
page”
• Okay for flash, in the order of few tens of usec

• Works well for hard disks also
• Benefit of amortizing page write cost

• Random reads incur seek latency but mitigated by
capturing working set of pages in RAM

B-Tree
Layer

Cache
Layer

Storage
Layer (disk or flash or other
NVM)

Base page

RAM

Flash Memory

.

.

.

.

.

.

Mapping
table

Sequential log

Write
ordering
in log

Base page

Base page

-record

-record

-record

Departure from Tradition: Page Layout on Flash

• Logical pages are formed by linking together records on possibly
different physical pages
• Logical pages do not correspond to whole physical pages on flash

• Physical pages on flash contain records from multiple logical pages

• Exploits random access nature of flash media
• No disk-like seek overhead in reading records in a logical page spread

across multiple physical pages on flash

• Adapted from SkimpyStash (ACM SIGMOD 2011)

Base page

Log-structured Store on SSD

.

.

.

.

.

Mapping

table

W
ri

te
 o

rd
e
ri

n
g

 i
n

 l
o

g

Base page

Base page

-record

-record

(Latch-free)

Flush Buffer

(8MB)

.

.

Base page

-record

-record

RAM

-record

.

.

Disk

RAM

-record

• Reading a “logical” page may involve reading delta records from

multiple physical pages

– Probably okay because of fast random access property of flash

– Mitigated by capturing working set of pages in memory

• But we can reduce read I/Os further

– Multiple delta records, when flushed together, are packed into a contiguous unit

on flash (C-delta)

– Pages consolidated periodically in memory also get consolidated on flash when

they are flushed

Flash

 
Base
page

Multiple delta records written together (C-delta)

• Two types of record units in the log

– Valid – Reachable from the flash offset in the mapping table

– Orphaned – not reachable

• Garbage collection starts from oldest portion of log

– Earliest written record (base page) on a “logical” page is encountered first

– Avoid cascaded pointer updates up the chain => relocate entire logical page at a

time, use this opportunity to consolidate

Flash

Mapping table

 
Base
page

Write order in log

GC point Write point

LLAMA: Cache Layer

• Provide abstraction of logical pages to
access method layer
• Mapping table containing RAM pointers or

flash offsets

• Read pages into RAM from stable storage

• Flush pages to stable storage
• Writes to flash ordered through flush buffers

• Swapout pages to reduce memory usage

B-Tree
Layer

Cache
Layer

Storage
Layer (disk or flash or other
NVM)

LLAMA: Page Swapout

• Attempt to swapout pages when memory
usage exceeds configurable threshold

• Uses variant of CLOCK algorithm

• Parallel page swapping functionality
• Each accessor to Bw-Tree does small amount of

page swapping work (“CLOCK sweep”) if needed

• RAM pointer replaced by flash offset in
mapping table

• Page structure deallocated using epoch based
memory garbage collection

Page

Page

Page
Flash

RAM

Page

Page

Bw-Tree/LLAMA Checkpointing

• B-Tree layer checkpointing (for durability)
• Flush pages to flush buffer and subsequently to

storage

• LLAMA checkpointing (for fast recovery)
• Write the mapping table to flash

-> When an entry contains RAM address, obtain flash
address from the in-memory page

-> Unused entries are written as zeroes

• Record write position in log when the checkpoint
started

• Alternate between two fixed regions on flash for
each checkpoint

Page ID Flash
Offset

Mapping Table

RSP

Flash Log

GC

Bw-Tree Fast Recovery

• Restore mapping table from latest
checkpoint region

• Scan from log position recorded in
checkpoint to end of log
• Read page ID from C-delta on log and

update flash offset in mapping table

• Restore Bw-tree root page LPID

• Optimizations for fast cache warm-up

Base page

RAM

Flash Memory

.

.

.

.

.

.

MTable

Sequential log

Base page

Base page

-record

-record

-record

Bw-Tree: Support for Transactions

Transactional Component

Bw-Tree Latch Free
Ordered Index

Latch-Free Linear
Hashing

App Needing
Transactional

Key-Value Store

App Needing Atomic
Key-Value Store

App Needing High
Performance Log

Structured “Page” Store

Data Component

D
eu

te
ro

n
o

m
y

A
rc

h
it

ec
tu

re

Access Method

LLAMA: Page Storage Engine

End-to-end Crash Recovery

• Data Component (DC) recovery
• Bw-Tree fast recovery as described

• Transactional Component (TC) recovery
• Helps to recover unflushed data at DC “up to” end of

stable log (WAL) at time of crash

• Requires DC to recover to a logically consistent state
first

Transaction
Component (TC)

Storage

Data Component (DC)

Record
Operations

Control
Operations

Bw-Tree in Production
• Key-sequential index in SQL Server Hekaton

• Lock-free for high concurrency, consistent with
Hekaton’s overall non-blocking main memory
architecture

• Indexing engine in Azure DocumentDB
• Rich query processing over a schema-free

JSON model, with automatic indexing
• Sustained document ingestion at high rates

• Sorted key-value store in Bing ObjectStore
• Support range queries
• Optimized for flash SSDs

ObjectStore

DocumentDB

• Formal query model optimized for queries over schema-less documents at scale

• Support for relational and hierarchical projections

• Consistent indexing in face of rapid, sustained high volume writes (optimized for flash SSDs)

• Developer tunable consistency-availability tradeoffs with SLAs

• Low latency, (Javascript) language integrated, transactional CRUD on storage partitions

• Elastic scale, resource governed, multi-tenant PaaS

Relational Stores
Fully schematized, relational

queries, transactions (e.g., SQL

Azure, Amazon RDS, SQL IaaS)

K V

Key-Value/

Column Family Stores

K V
Key Value

k1 XML

k2 .NET

k3 Java

Schema-less with opaque

values, lookups on keys (e.g.,

Azure Tables, HBASE, BigTable,

LevelDB, Cassandra, …)

(JSON) Document Stores
Schema-less, rich hierarchical queries, (Javascript) sprocs/triggers/UDFs

(e.g. MongoDB, CouchDB, Espresso, …)

{

"location": [

{ "country": "USA", "city": "NYC" },

{ "country": "Italy", "city": "Rome" }

], "main": "Pisa",

"exports":[

{ "city": "Oslo" },

{ "city": "Lima" }

]

}

/"exports"/?/"city"/"!"-> eval("js", "function(input, output) { output.results= input.results.sort(); }")

location main exports

Pisa 0 1

city

Oslo

city

Lima

0

country city

USA NYC

1

country city

Italy Rome

Write

• Sustained high volume writes without any term locality • Extremely high concurrency

• Queries should honor various consistency levels • Multi-tenancy with strict, reservation based,

sub-process level resource governance

Consistent Indexing over schema-less documents is an overly constrained design space

t  {d1, d2, d3}

Base Page

t  {d4
+}

t  {d2
-}

t  {d1, d3, d4}

Consolidated Page

{d1, d2, d3} {d4
+} {d2

-}

{d1, d3, d4}

Page

t  {d4
+}

Read Write

t  {d1, d2, d3}

t  {d1, d2, d3, d4}

Page Stub

Modify

Blind update

Blind update

• Index update: No key locality; cannot afford a Read to

do the Write; low Write Amplification

• Queries: Low Read Amplification

• Frugal resource budget

Key Challenges

Bw-Tree Resource Governance
• CPU resource governance

• Threads calling into Bw-Tree do not block (upon I/O or in-
memory page access)

• Top-level scheduler controls thread budget per replica

• Memory resource governance
• Dynamically configurable buffer pool limit

• IOPS resource governance
• Check resource usage before issuing I/O, retry after dynamically

computed timeout interval

• Storage resource governance
• LLAMA log-structured store can grow/shrink dynamically

• Self-adjusting based on logical data size

Bringing up Bw-Tree Replica

• Obtain Bw-Tree physical state stream
from primary
• LLAMA checkpoint file (most recent)

• Valid portion of LLAMA log (between GC
and write points)

• Bring up Bw-Tree using fast recovery

• Catch up with primary
• Replay logical operations from primary

with LSNs upward of last (contiguous)
LSN in recovered Bw-Tree

Primary

Secondary Secondary

Reads/Writes

ReadsReads

Existing Replica New Replica

Log Structured Store

Bw-Tree Index Bw-Tree Index

Log Structured Store

Document Replication +

Indexing

Bw-Tree: Summary

• Classical B-Tree redesigned from ground up for modern hardware and cloud
• Lock-free for high concurrency on multi-core processors

• Delta updating of pages in memory for cache efficiency

• Log-structured storage organization for flash SSDs

• Flexible resource governance in multi-tenant setting

• Transactional component can be layered above as part of Deuteronomy architecture

• Shipping in Microsoft’s server/cloud offerings
• Key-sequential index in SQL Server Hekaton

• Indexing engine in Azure DocumentDB

• Sorted key-value store in Bing ObjectStore

• Going forward
• Layer a transactional component on top as per Deuteronomy architecture (CIDR 2015,

VLDB 2016)

• Open-source the codebase

