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The B-Tree

• Key-ordered access to records

• Separator keys in internal nodes (to guide search) and full records in          
leaf nodes

• Efficient point and range lookups

• Balanced tree via page split and merge mechanisms

On Disk

In

Memory

…data datadata data datadata



Design Tenets for A New B-Tree

• Lock-free operations for high concurrency

• Exploit modern multi-core processors

• Log-structured Storage Organization

• Exploit fast random read property of flash and 

work around inefficient random writes

• Delta updates to pages

• Reduces cache invalidation in memory hierarchy

• Reduces garbage creation and write amplification                                            

on flash, increases device lifetime



Bw-Tree Architecture
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• Expose API

• B-tree search/update logic

• In-memory pages only

• Logical page abstraction for
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The Mapping Table

• Expose logical pages to the access 
method layer
• Translates logical page ID to physical 

address

• Helps to isolate updates to a single
page

• Central data structure for multi-
threaded concurrency control

• Also used for log-structured store mapping

• Updated in lock-free manner [using compare-
and-swap (CAS)]
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Flash SSDs: Log-Structured Storage
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LLAMA Log-Structured Store

• Suitable for flash + other benefits

• Amortize cost of writes over many page 
updates
• Aggregate large amounts of new/changed data 

and append to the log in a single I/O

• Multiple random reads to fetch a “logical 
page”
• Okay for flash, in the order of few tens of usec

• Works well for hard disks also
• Benefit of amortizing page write cost

• Random reads incur seek latency but mitigated by 
capturing working set of pages in RAM

B-Tree
Layer

Cache
Layer

Storage
Layer (disk or flash or other 
NVM)



Base page

RAM

Flash Memory

.

.

.

.

.

.

Mapping 
table

Sequential log

Write 
ordering   
in log

Base page

Base page

-record

-record

-record



Departure from Tradition: Page Layout on Flash

• Logical pages are formed by linking together records on possibly 
different physical pages
• Logical pages do not correspond to whole physical pages on flash 

• Physical pages on flash contain records from multiple logical pages

• Exploits random access nature of flash media
• No disk-like seek overhead in reading records in a logical page spread 

across multiple physical pages on flash

• Adapted from SkimpyStash (ACM SIGMOD 2011)
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• Reading a “logical” page may involve reading delta records from 

multiple physical pages 

– Probably okay because of fast random access property of flash

– Mitigated by capturing working set of pages in memory

• But we can reduce read I/Os further

– Multiple delta records, when flushed together, are packed into a contiguous unit 

on flash (C-delta)

– Pages consolidated periodically in memory also get consolidated on flash when 

they are flushed

Flash

 
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page

Multiple delta records written together (C-delta)



• Two types of record units in the log

– Valid – Reachable from the flash offset in the mapping table 

– Orphaned – not reachable

• Garbage collection starts from oldest portion of log

– Earliest written record (base page) on a “logical” page is encountered first

– Avoid cascaded pointer updates up the chain => relocate entire logical page at a 

time, use this opportunity to consolidate
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LLAMA: Cache Layer

• Provide abstraction of logical pages to 
access method layer
• Mapping table containing RAM pointers or  

flash offsets

• Read pages into RAM from stable storage

• Flush pages to stable storage
• Writes to flash ordered through flush buffers

• Swapout pages to reduce memory usage
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LLAMA: Page Swapout

• Attempt to swapout pages when memory 
usage exceeds configurable threshold

• Uses variant of CLOCK algorithm

• Parallel page swapping functionality
• Each accessor to Bw-Tree does small amount of 

page swapping work (“CLOCK sweep”) if needed

• RAM pointer replaced by flash offset in 
mapping table

• Page structure deallocated using epoch based 
memory garbage collection
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Bw-Tree/LLAMA Checkpointing

• B-Tree layer checkpointing (for durability)
• Flush pages to flush buffer and subsequently to 

storage

• LLAMA checkpointing (for fast recovery)
• Write the mapping table to flash

-> When an entry contains RAM address, obtain flash 
address from the in-memory page

-> Unused entries are written as zeroes

• Record write position in log when the checkpoint 
started

• Alternate between two fixed regions on flash for 
each checkpoint 

Page ID Flash 
Offset

Mapping Table

RSP

Flash Log

GC



Bw-Tree Fast Recovery

• Restore mapping table from latest 
checkpoint region

• Scan from log position recorded in 
checkpoint to end of log 
• Read page ID from C-delta on log and 

update flash offset in mapping table

• Restore Bw-tree root page LPID

• Optimizations for fast cache warm-up 

Base page

RAM

Flash Memory

.

.

.

.

.

.

MTable

Sequential log

Base page

Base page

-record

-record

-record



Bw-Tree: Support for Transactions

Transactional Component
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End-to-end Crash Recovery

• Data Component (DC) recovery
• Bw-Tree fast recovery as described

• Transactional Component (TC) recovery
• Helps to recover unflushed data at DC “up to” end of 

stable log (WAL) at time of crash

• Requires DC to recover to a logically consistent state 
first
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Bw-Tree in Production
• Key-sequential index in SQL Server Hekaton

• Lock-free for high concurrency, consistent with 
Hekaton’s overall non-blocking main memory 
architecture

• Indexing engine in Azure DocumentDB
• Rich query processing over a schema-free 

JSON model, with automatic indexing
• Sustained document ingestion at high rates

• Sorted key-value store in Bing ObjectStore
• Support range queries
• Optimized for flash SSDs

ObjectStore



DocumentDB

• Formal query model optimized for queries over schema-less documents at scale

• Support for relational and hierarchical projections

• Consistent indexing in face of rapid, sustained high volume writes (optimized for flash SSDs)

• Developer tunable consistency-availability tradeoffs with SLAs

• Low latency, (Javascript) language integrated, transactional CRUD on storage partitions

• Elastic scale, resource governed, multi-tenant PaaS

Relational Stores
Fully schematized, relational 

queries, transactions (e.g., SQL 

Azure, Amazon RDS, SQL IaaS)

K V

Key-Value/       

Column Family Stores

K V
Key Value

k1 XML

k2 .NET

k3 Java

Schema-less with opaque 

values, lookups on keys (e.g., 

Azure Tables, HBASE, BigTable, 

LevelDB, Cassandra, …)

(JSON) Document Stores
Schema-less, rich hierarchical queries, (Javascript) sprocs/triggers/UDFs 

(e.g. MongoDB, CouchDB, Espresso, …) 

{

"location": [

{ "country": "USA", "city": "NYC" },

{ "country": "Italy", "city": "Rome" }

], "main": "Pisa",

"exports":[

{ "city": "Oslo" },

{ "city": "Lima" }

]

}

/"exports"/?/"city"/"!"-> eval("js", "function(input, output) { output.results= input.results.sort(); }")
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Write

• Sustained high volume writes without any term locality • Extremely high concurrency

• Queries should honor various consistency levels • Multi-tenancy with strict, reservation based,   

sub-process level resource governance

Consistent Indexing over schema-less documents is an overly constrained design space
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• Index update: No key locality; cannot afford a Read to

do the Write; low Write Amplification

• Queries: Low Read Amplification

• Frugal resource budget
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Bw-Tree Resource Governance
• CPU resource governance

• Threads calling into Bw-Tree do not block (upon I/O or                    in-
memory page access)

• Top-level scheduler controls thread budget per replica

• Memory resource governance
• Dynamically configurable buffer pool limit

• IOPS resource governance
• Check resource usage before issuing I/O, retry after dynamically          

computed timeout interval

• Storage resource governance
• LLAMA log-structured store can grow/shrink dynamically

• Self-adjusting based on logical data size 



Bringing up Bw-Tree Replica

• Obtain Bw-Tree physical state stream 
from primary
• LLAMA checkpoint file (most recent)

• Valid portion of LLAMA log (between GC 
and write points)

• Bring up Bw-Tree using fast recovery

• Catch up with primary 
• Replay logical operations from primary 

with LSNs upward of last (contiguous) 
LSN in recovered Bw-Tree

Primary

Secondary Secondary

Reads/Writes

ReadsReads

Existing Replica New Replica

Log Structured Store

Bw-Tree Index Bw-Tree Index

Log Structured Store

Document Replication + 

Indexing



Bw-Tree: Summary

• Classical B-Tree redesigned from ground up for modern hardware and cloud
• Lock-free for high concurrency on multi-core processors

• Delta updating of pages in memory for cache efficiency

• Log-structured storage organization for flash SSDs

• Flexible resource governance in multi-tenant setting

• Transactional component can be layered above as part of Deuteronomy architecture

• Shipping in Microsoft’s server/cloud offerings
• Key-sequential index in SQL Server Hekaton

• Indexing engine in Azure DocumentDB

• Sorted key-value store in Bing ObjectStore

• Going forward
• Layer a transactional component on top as per Deuteronomy architecture (CIDR 2015, 

VLDB 2016)

• Open-source the codebase


