

Design Decisions and Repercussions of Compression and Data Reduction in a Storage Array

Chris Golden Pure Storage

Data Reduction

- Huge performance impact on disk
- Very little performance impact on flash
- Table stakes feature for all-flash storage arrays
- Goals
 - Increase usable capacity
 - Extend media lifetime
- Many different ways to implement
 - These design decisions have ripple effects

Dedup + Compression – Better Together

SD

15

Actual results from entire Pure Storage install base

2X savings over 4KB dedupe alone

True data reduction, not thin provisioning

3

Dedup vs Compression

- Compression A local process reducing the number of bits required to represent data
- Deduplication A global process ensuring that identical data is only written once

Block Size + Alignment

- All arrays have 3 block sizes and alignments
 Client, Array Device
- Size mismatches and/or unaligned operations create read / write amplification in the underlying layer

□Client > Array > Device

2015 Storage Developer Conference. © Pure Storage. All Rights Reserved.

5

Data Protection

Our choice of data protection matters
 Mirroring, RAID5, RAID6, etc.

Should be designed with compression and deduplication in mind

- Reduces the number of bits required to represent the original data
- □ Final representation is variable sized
- We can apply more CPU for better results

2015 Storage Developer Conference. © Pure Storage. All Rights Reserved.

7

Compression – How to Choose

- Variables to optimize
 - Compression Speed
 - Decompression Speed
 - Size of representation
- Variables that can be controlled
 - Choice of algorithm, level
- Variables that change with workload
 - Compressibility of the data

8

Compression – How to Store

- Full Precision
- Nearest Size Bins
- Large Bins with Many Blocks

Full Precision

- Find free space on the underlying devices exactly matching the compressed size
- Global fragmentation problem
- Overwrites have 3 outcomes, 2 are bad
 New data is larger, must find a new place
 Data is smaller, extra space may be wasted

Details – Nearest Sized Bin

Bucket Sizes

SD @

Details – Large Bins

SD[©]

12

Deduplication

- Identify duplicate bits and store them a single time
- Cryptographic Hash vs Weak Hash and Verify
- Fixed Size vs Variable Sized

Details – Cryptographic vs Weak Hash

Cryptographic hash
 More CPU required
 More metadata required
 Weak Hash

Collisions must be resolved via device read

Details – Fixed vs Variable Size

Fixed size

- Fewer hashes to calculate
- Alignment of user writes matters

Variable size

- More metadata required
- Choice of compression becomes important

Variable Length Dedupe + Compression

Creates read amplification and CPU overhead
 Must read and decompress entire block
 Overwrites also get more complicated

TODO: Add diagram

Compression + Dedupe

- Order of operations matters
- Compress first
 - Might require less CPU
 - Works well with fixed sized compression and dedupe
- **Dedupe first**
 - Can find duplicates in the middle of compressed blocks
 - Works well for variable dedup

Space Reporting

Compression and dedup make space reporting complicated

Hard problems

- Identifying shared space and reporting
- Predicting future capacity
 - How much space will I reclaim if I remove this data?

How much additional data can I store?

Performance

- We're skimming some performance off the top to enable greater space utilization
- Compression eats CPU cycles
- Dedup eats CPU cycles and may create hotspots
- Read / Write amplification

PLACEHOLDER - Analysis of a Sample Data Set

2015 Storage Developer Conference. © Pure Storage. All Rights Reserved.

SD (E

Wrap Up

- Different ways to implement data reduction
- Each implementation has implications on the rest of your system design
 - Performance
 - Economics
 - Ease of implementation

Thank You!

Questions?

